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Abstract: Mining knowledge from large amounts of spatial data is 
known as spatial data mining. It becomes a highly demanding 
field because huge amounts of spatial data have been collected in 
various applications ranging from geo-spatial data to bio-medical 
knowledge. The amount of spatial data being collected is 
increasing exponentially. So, it far exceeded human’s ability to 
analyze. Recently, clustering has been recognized as a primary 
data mining method for knowledge discovery in spatial database. 
The database can be clustered in many ways depending on the 
clustering algorithm employed, parameter settings used, and 
other factors. Multiple clustering can be combined so that the 
final partitioning of data provides better clustering.  In this paper, 
a novel density based k-means clustering algorithm has been 
proposed to overcome the drawbacks of DBSCAN and kmeans 
clustering algorithms. The result will be an improved version of k-
means clustering algorithm. This algorithm will perform better 
than DBSCAN while handling clusters of circularly distributed 
data points and slightly overlapped clusters. 
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I.  INTRODUCTION 
Clustering is considered as one of the important 

techniques in data mining and is an active research topic for 
the researchers. The objective of clustering is to partition a set 
of objects into clusters such that objects within a group are 
more similar to one another than patterns in different clusters. 
So far, numerous useful clustering algorithms have been 
developed for large databases, such as K-MEANS [1], 
CLARANS [2], BIRCH [3], CURE [4], DBSCAN [5], 
OPTICS [6], STING [7] and CLIQUE [8]. These algorithms 
can be divided into several categories. Three prominent 
categories are partitioning, hierarchical and density-based. All 
these algorithms try to challenge the clustering problems 
treating huge amount of data in large databases. However, 
none of them are the most effective.  

In density-based clustering algorithms, which are designed 
to discover clusters of arbitrary shape in databases with noise, 
a cluster is defined as a high-density region partitioned by low-
density regions in data space. DBSCAN (Density Based 
Spatial Clustering of Applications with Noise) [5] is a typical 
density-based clustering algorithm. In this paper, we present a 
new algorithm which overcomes the drawbacks of DBSCAN 
and k-means clustering algorithms.  

II.  DBSCAN ALGORITHM 
Density-Based Spatial Clustering and Application 

with Noise (DBSCAN) was a clustering algorithm based on 
density. It did clustering through growing high density area, 
and it can find any shape of clustering (Rong et al., 2004). The 

The idea of it was: 

1. ε-neighbor: the neighbors in ε semi diameter of 
an object 

2. Kernel object: certain number (MinP) of 
neighbors in ε semi diameter 

3. To a object set D, if object p is the ε-neighbor of 
q, and q is kernel object, then p can get “direct 
density reachable” from q. 

4. To a ε, p can get “direct density reachable” from 
q; D contains Minp objects; if a series object 

q,p,...,p,pp n 121 , ppn  , then
1ip  can get 

“direct density reachable” from 
ip , 

niD,pi  1  

5. To ε and MinP, if there exist a object )( Doo  , p 

and q can get “direct density reachable” from o, 
p and q are density connected. 

 
Density Reachability and Density Connectivity 

Density reachability is the first building block in dbscan. It 
defines whether two distance close points belong to the same 
cluster. Points p1 is density reachable from p2 if two 
conditions are satisfied: (i) the points are close enough to each 
other: distance (p1, p2) <e, (ii) there are enough of points in is 
neighborhood: |{ r : distance(r,p2)}|>m, where r is a database 
point.  

Density connectivity is the last building step of dbscan. 
Points p0 and pn are density connected, if there is a sequence 
of density reachable points p1,i2,...,i(n-1) from p0 to pn such 
that p(i+1) is density reachable from pi. A dbscan cluster is a 
set of all density connected points. 

Explanation of DBSCAN Steps 

 DBScan requires two parameters: epsilon (eps) and 
minimum points (minPts). It starts with an arbitrary 
starting point that has not been visited. It then finds all the 
neighbor points within distance eps of the starting point. 

 If the number of neighbors is greater than or equal to 
minPts, a cluster is formed. The starting point and its 
neighbors are added to this cluster and the starting point is 
marked as visited. The algorithm then repeats the 
evaluation process for all the neighbors recursively. 

 If the number of neighbors is less than minPts, the point is 
marked as noise. 

 If a cluster is fully expanded (all points within reach are 
visited) then the algorithm proceeds to iterate through the 
remaining unvisited points in the dataset. 
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Advantages 

1. DBScan does not require you to know the number of 
clusters in the data a priori, as opposed to k-means. 

2. DBScan can find arbitrarily shaped clusters. It can even 
find clusters completely surrounded by (but not connected 
to) a different cluster. Due to the MinPts parameter, the 
so-called single-link effect (different clusters being 
connected by a thin line of points) is reduced. 

3. DBScan has a notion of noise. 
4. DBScan requires just two parameters and is mostly 

insensitive to the ordering of the points in the database. 

Disadvantages 

1. DBSCAN can only result in a good clustering as good as 
its distance measure is in the function 
getNeighbors(P,epsilon). The most common distance 
metric used is the euclidean distance measure. Especially 
for high-dimensional data, this distance metric can be 
rendered almost useless. 

2. DBScan does not respond well to data sets with varying 
densities (called hierarchical data sets). 

 
 

III.  K MEANS ALGORITHM 
The naive k-means algorithm partitions the dataset 

into ‘k’ subsets such that all records, from now on referred to 
as points, in a given subset "belong" to the same center. Also 
the points in a given subset are closer to that center than to any 
other center.  

The algorithm keeps track of the centroids of the 
subsets, and proceeds in simple iterations. The initial 
partitioning is randomly generated, that is, we randomly 
initialize the centroids to some points in the region of the 
space. In each iteration step, a new set of centroids is generated 
using the existing set of centroids following two very simple 
steps. Let us denote the set of centroids after the ith iteration by 
C(i). The following operations are performed in the steps: 

(i) Partition the points based on the centroids 
C(i),  that is, find the centroids to which each 
of the points in the dataset belongs. The 
points are partitioned based on the Euclidean 
distance from the centroids.  

 

(ii) Set a new centroid c(i+1)    C (i+1)  to be 
the mean of all the points that are  closest to 
c(i)   C (i) The new location of the centroid 
in a particular partition is referred to as the 
new location of the old centroid.  

 

The algorithm is said to have converged when 
recomputing the partitions does not result in a change in the 
partitioning. In the terminology that we are using, the 
algorithm has converged completely when C(i) and C(i – 1) are 
identical. For configurations where no point is equidistant to 
more than one center, the above convergence condition can 
always be reached.  This convergence property along with its 
simplicity adds to the attractiveness of the k-means algorithm.   

 The k-means needs to perform a large number of 
"nearest-neighbour" queries for the points in the dataset. If the 
data is‘d’ dimensional and there are ‘N’ points in the dataset, 
the cost of a single iteration is O(kdN). As one would have to 
run several iterations, it is generally not feasible to run the 
naïve k-means algorithm for large number of points.   

Sometimes the convergence of the centroids (i.e. C(i) 
and C(i+1) being identical) takes several iterations. Also in the 
last several iterations, the centroids move very little. As 
running the expensive iterations so many more times might not 
be efficient, we need a measure of convergence of the 
centroids so that we stop the iterations when the convergence 
criteria is met. Distortion is the most widely accepted measure.  

Clustering error measures the same criterion and is 
sometimes used instead of distortion. In fact k-means 
algorithm is designed to optimize distortion. Placing the cluster 
center at the mean of all the points minimizes the distortion for 
the points in the cluster. Also when another cluster center is 
closer to a point than its current cluster center, moving the 
cluster from its current cluster to the other can reduce the 
distortion further. The above two steps are precisely the steps 
done by the k-means cluster. Thus k-means reduces distortion 
in every step locally. The k-Means algorithm terminates at a 
solution that is locally optimal for the distortion function. 
Hence, a natural choice as a convergence criterion is distortion. 
Among other measures of convergence used by other 
researchers, we can measure the sum of Euclidean distance of 
the new centroids from the old centroids.  In this thesis we 
always use clustering error/distortion as the convergence 
criterion for all variants of k-means algorithm. 

Definition 1: Clustering error is the sum of the squared 
Euclidean distances from points to the centers of the partitions 
to which they belong.   

Mathematically, given a clustering  , we denote by 

)(x  the centroid this clustering associates with an arbitrary 

point x (so for k-means, )(x  is simply the center closest to 

x). We then define a measure of quality for  :  

 
x

xx
N

distortion
2

)(
1   

Where |a| is used to denote the norm of a vector ‘a’. 
The lesser the difference in distortion over successive 
iterations, the more the centroids have converged. Distortion is 
therefore used as a measure of goodness of the partitioning.  

In spite of its simplicity, k-means often converges to local 
optima. The quality of the solution obtained depends heavily 
on the initial set of centroids, which is the only non-
deterministic step in the algorithm. Note that although the 
starting centers can be selected arbitrarily, k-means is fully 
deterministic, given the starting centers. A bad choice of initial 
centers can have a great impact on both performance and 
distortion. Also a good choice of initial centroids would reduce 
the number of iterations that are required for the solution to 
converge. Many algorithms have tried to improve the quality 
of the k-means solution by suggesting different ways of 
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ways of sampling the initial centers, but none has been able to 
avoid the problem of the solution converging to a local 
optimum. 

Problems with kmeans clustering algorithm 

The algorithm is simple and has nice convergence but there 
are number of problems with this.  Some of the weaknesses of 
k-means are 

 When the numbers of data are not so many, initial 
grouping will determine the cluster significantly. 

 The result is circular cluster shape because based 
on distance. 

 The number of cluster, K, must be determined 
before hand. Selection of value of K is itself an 
issue and sometimes its hard to predict before 
hand the number of clusters that would be there 
in data. 

 We never know the real cluster, using the same 
data, if it is inputted in a different order may 
produce different cluster if the number of data is 
few. 

 Sensitive to initial condition. Different initial 
condition may produce different result of cluster. 
The algorithm may be trapped in the local 
optimum.  

 We never know which attribute contributes more 
to the grouping process since we assume that 
each attribute has the same weight. 

 Weakness of arithmetic mean is not robust to 
outliers. Very far data from the centroid may pull 
the centroid away from the real one.  

 Experiments have shown that outliers can be a 
problem and can force algorithm to identify false 
clusters. 

 Experiments have shown that performance of 
algorithms degrade in higher dimensions and can 
be off by factor of 5 from optimum [10][11]. 

 

IV.  PROPOSED ALGORITHM 
 

Let D is the Dataset with n points 

        k be the number of clusters to be found 

l be the number of clusters initially found by density 
based clustering algorithm 

        ε be the Euclidean neighborhood radius 

 Minimum number of neighbors required in ε 
neighborhood to form a cluster 

         p can be any point in D 

         N is a set of points in ε neighborhood of p 

 

c=0 

 for each unvisited point p in dataset D  

    { 

     N = getNeighbors (p, ε) 

     if (sizeof(N) < ) 

        mark p as NOISE 

     else 

        ++ c 

        mark p as visited 

        add p to cluster c 

        recurse (N) 

} 

Now will have m clusters  

for each detected clusters { 

find the cluster centers Cmby taking the mean 

find the total number of points in each cluster 

} 

If m>k { 

  # Join two or more as follows 

 select two cluster based on density and 
number of points satisfying the application criteria 
and joint them and find the new cluster center  and 
repeat it until achieving k clusters. 

Finally we will have Ck centers 

} else { 

l =k-m 

# split one or more as follows 

if ( m >=l ) { 

select a cluster based on density and number of 
points satisfying the application criteria and split it 
using kmeans clustering algorithm and repeat it 
until achieving k clusters. 

Finally we will have Ck centers 

} 

 Apply one iteration of k-mean clustering with k and 
new Ck centers as the initial parameters and label all the 
clusters with k labels. 

Note: in our simulation of the algorithm, we only assumed 
overlapped clusters of circular or spheroid in nature. So the 
criteria for splitting or joining a cluster can be decided based 
on the number of expected points in a cluster or the expected 
density of the cluster (derived by using the number of points in 
a cluster and the area of the cluster) 

V.  EVALUATION AND RESULTS 

Metrics Used For Evaluation 
In order to measure the performance of a clustering and 

classification system, a suitable metric will be needed. For 
evaluating the algorithms under consideration, we used Rand 
Index and Run Time as two measures. 

a. Performance in terms of time 

We evaluated the three algorithms DBSCAN, kmeans and 
DBkmeans in terms of time required for clustering. 

The Attributes of Multidimensional Data :                            

The Number Of Classes:   5  
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The Number Of Dimensions:   2  

The Number Of Points Per Class:  50 , 100, 150,  200,250 

The standard Deviation: 7.000000e-001 

Time Taken for Classification 

(in seconds) 
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1 250 0.03 0.02 0.03

2 500 0.09 0.02 0.09

3 750 0.2 0.02 0.2 

4 1000 0.31 0.03 0.3 

5 1250 0.42 0.01 0.44
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b. Performance in terms of accuracy 

The Rand index or Rand measure is a commonly used 
technique for measure of such similarity between two data 
clusters. This measure was found by W. M. Rand and 
explained in his paper "Objective criteria for the evaluation of 
clustering methods" in Journal of the American Statistical 
Association(1971). 

Given a set of n objects S = {O1, ..., On} and two data 
clusters of S which we want to compare: X = {x1, ..., xR} and 
Y = {y1, ..., yS} where the different partitions of X and Y are 
disjoint and their union is equal to S; we can compute the 
following values: 

a is the number of elements in S that are in the same 
partition in X and in the same partition in Y,  

b is the number of elements in S that are not in the same 
partition in X and not in the same partition in Y,  

c is the number of elements in S that are in the same 
partition in X and not in the same partition in Y,  

d is the number of elements in S that are not in the same 
partition in X but are in the same partition in Y.  

Intuitively, one can think of a + b as the number of 
agreements between X and Y and c + d the number of 
disagreements between X and Y. The Rand index, R, then 
becomes, 

The Rand index has a value between 0 and 1 with 0 
indicating that the two data clusters do not agree on any pair of 
points and 1 indicating that the data clusters are exactly the 
same. 

The Attributes of Multidimensional Data :  

      The Number Of Classes:   5  

       The Number Of Dimensions:   2  

       The Number Of Points Per Class:  50 , 100, 150,  200,250 

       The standard Deviation: 7.000000e-001 

 

Classification Accuracy 

Measured by  Rand Index 

(Found using Original Class Labels and 
Calculated Class Labels) 
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1 250 0.37 0.6 0.73 

2 500 0.37 0.67 0.93 

3 750 0.43 0.72 0.96 

4 1000 0.47 0.69 0.95 

5 1250 0.37 0.67 0.93 
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Accuracy of Classification
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The Clustering and Outlier Detection Results 
The following show the clusters and outliers marked with 

DBSCAN and DBkmeans. 

 
The original clusters 

 

               
 

 
Clusters Marked without outliers 

 
            

 
 

 
Clusters Marked along with outliers 

 

From the plotted results, it is noted that DBkmeans 
perform better than DBSCAN. 
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VI.  CONCLUSION 
The proposed clustering and outlier detection system 

has been implemented using Matlab and tested with the data 
synthetically created by gaussian distribution function. The 
data will form circular or spherical clusters in space.  As 
shown in the tables and graphs, the proposed Dbkmeans 
algorithm performed very well than DBSCAN and k-means 
clustering in term of quality of classification measured by 
Rand index. One of the major challenges in medical domain is 
the extraction of comprehensible knowledge from medical 
diagnosis data. There is lot of scope for the proposed 
Dbkmeans clustering algorithm in different application areas 
such as medical image segmentation and medical data mining. 
Future works may address the issues involved in applying the 
algorithm in a particular application area.  
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