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Abstract -This paper proposes a new approach to feedback linearization of flexible link robots which 
have uncertain modeling. The flexibility of joints is performed by use of the solenoid nonlinear springs, 
which have damper property. The simplified nonlinear H∞ controller is used to control linearized flexible 
link robots. The new continues and smooth model of frictions is used for modeling the dynamics of 
flexible robots.  The effect of parameters tolerance, external disturbances and also other nonlinearities 
are expressed by a nonlinear independent term in linearized dynamics. Simulation results demonstrate 
that the proposed feedback linearization with simplified nonlinear H∞ controller has ability to control 
flexible joint robots with a good performance. Also it is more efficient than the NL-H∞ based controller 
with nonlinear dynamics. This technique can be used to control the other nonlinear systems which have 
the dynamics similar to flexible joint robots. 

Keywords:   nonlinear H - flexible joint – robust –feedback lionization 

 

1. Introduction 

In the last years, a large range of robots have been developed and used to perform special type of tasks, such 
as aerospace and high hazardous chemical activities, to interact with humans in the industrial projects, 
household activities as assistance to elder or physically challenged people. The most important necessities for 
the specifications of robots in the human environment are safety and reliability of the robotic system [1][2][9]. 
These necessities limit and prohibit the use of standard industrial robots for the cooperation with humans. Often 
ordinary industrial robot systems are designed with rigid links that implies to high weight link. In order to have 
more safety and reliability, joint flexibility is present in many current industrial robots. Flexible Joint Robot 
(FJR) systems with elastic specifications are usually used in the chemical, military, integrated circuits 
manufacturing and many other industrial processes in order to have properties with high sensitivity and accuracy 
[17]. During the last decades, nonlinear systems and control theory have had major  development. In general, the 
use of linear and traditional controllers for FJRs is limited to proximity of equilibrium operation point with low 
accuracy [6]. Therefore using most excellent controllers such as nonlinear and intelligent classes are justified 
because, industrial projects usually require accuracy, repeatability and simplicity in the realization of the control 
law. In many robotics applications, the joint flexibility cannot be neglected. On the other hand, it is well known 
that ignoring the modeling of elastic coupling between the actuators is a major source of oscillatory problems 
and the robot joints can lead to instability, high frequency vibrations and reduced performance in some extreme 
cases [16][3],[6],[11]. Joint flexibility in robots can be caused by naturally inherent of used material in structure 
of robots or human made that is applied intentionally. When harmonic drives, belts or long shafts are used as 
motion transmission elements, a dynamic displacement is introduced between the position of the driving 
actuators and that of the driven links, which is the output to be controlled. Flexible behavior can be changed to 
rigid with stiffness going to infinity, then the dynamic model of robots with elastic joints lend itself to a 
singularly perturbed format. Based on the natural two-time-scale nature of the FJR dynamics, several 
approximate tracking controllers have been proposed. Performance of these methods is actually acceptable when 
the joints are sufficiently rigid [6]. It is confirmed that the FJRs have non-linear dynamic, therefore a high-
accurate controlling for FJRs requires advanced controllers with special design [6] So the joint flexibility should 
be considered in any practical robotic modeling. From a modeling view, until now several models for FJR have 
been proposed and developed which the Spong model is used the most commonly [16]. This model is based on 
the following assumptions: first the kinetic energy of each rotor is due only to its own rotation, and second the 
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joint flexibility behaves as a linear spring. The first assumption is valid only when the velocities of the previous 
links and rotors are very small. Other problem in robots especially FJRs is friction modeling. De Wit showed 
that the friction had to be modeled correctly and could not be ignored [13]. In control theory, feedback 
linearization as one of the most active research areas, is a powerful technique for control of nonlinear systems, 
where it has been extensively applied to many electromechanical systems such as, rigid and flexible joint robots 
[4][18]. Feedback linearization converts a nonlinear system into an equal controllable linear system by using 
state feedback. Despite this remarkable theory, the actual design of a state-feedback linearization is still very 
difficult and it has been performed only on simple systems for example rigid robots with up to three joints. 
Recently, it has been proven that the dynamic models of FJRs are invertible with no zero dynamics [5][6]. Even 
though researches on the design of controllers to achieve a linear input-output has been done well, but the 
conventional input-output linearization techniques will perform very unsuccessfully when the converted linear 
system has the unstable and  unobservable internal dynamics [7]. Hence the input-output linearized system must 
be have stable zero dynamics for internal stability[7]. The performance and robustness of linearized systems are 
decreased by model uncertainties, and also the estimation of unknown dynamics seems to be difficult. 

In this paper, we consider FJRs which have some rigid arms and joints with high flexibility. Also parametric 
uncertainties have been considered on modeling. We generalize the applicability of feedback linearization and 
decoupling control techniques to the uncertain n-link FJRs. We will see that, in the presence of uncertainties, 
static state feedback may or may not be enough to obtain full-state linearization and input–output decoupling. So 
a robust linearized feedback is proposed to robustly control an uncertain FJR system around an operating point. 
The first objective of this paper is to develop a new comprehensive uncertain n-link FJR model, the new 
structure for torque coupling. The second objective of this paper is to design a robust nonlinear controller using 
a simplified NL-H∞ and feedback linearization techniques. The controller will be designed for a single-link 
flexible joint robot manipulator as a case study. Simulations are carried out to test the performance of the 
proposed control approach. 

 

2. Modeling 

Until now several models are presented for expression of dynamics of rigid robots. One of the most used 
models in robotic control has been proposed based on Lagrange formulation [19]. In addition to Lagrange 
method, there are two less known methods based on classical mechanic theory. Despite the difference in how to 
create equations, all models lead to the unique structure.  

2.1 Model of Rotary Serial Robots 
Lagrange method provides system dynamics describing equations in mechanical systems by using the kinetic 

K(q, q) and potential V(q) energy which are expressed as a function of links position vector as below:  

  T1 2 nq q q ... q  (1) 

Links position in robots with rotary joints is selected by joints angle. Therefore, the system kinetic and 
potential energy can be expressed as follows: 

 

T1
2

n
T

i ci
i 1

K(q,q) q M(q)q

V(q) m g r




 

  
 (2) 

where M(q) , g and rci are positive inertia matrix, the direction of gravity vector and the coordinates of the 

center of mass of ith link vector respectively. Then by using L K V  and applying in the following differential 

equation system dynamics equations is created. 

 j
j j

d L L

dt q q

 
  

 
 (3) 
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Also Tj which is as the actuator torque in the mechanical systems, is called generalized force. It is also 
assumed that the links, joints and gearboxes are all rigid type in rigid class robots. Thus, the equations of the 
rigid robot by using Lagrange formulation are expressed as follows [19]: 

 rb kin rb kin

rb kin f

M(q, , )q C(q,q, , )

g(q, , ) f (q,q)

    
     

 
  (4) 

Where N NM(.)  is a symmetric positive matrix and can be expressed as a mM(.) M (.) M (.)  . Also 

aM (.) and mM (.) are configuration dependent and compact gear-boxed motor inertia matrixes on the link side. 

Also NC(.)  and Ng(.) represent torques of coriolis-centrifugal and gravity. NT is system actuator 

vector and N
ff (.) is the vector of frictions such as coulomb and viscose [17]. rb and kin are expression rigid 

body and kinetic parameters for ith  link which are expressed as follows [19]: 

 

i i i i i i i i
rb i xx yy zz xy xz yz

i i i i
kin x y z

m J J J J J J    
      

 (5) 

Where i , i and iJ  are link length vector, link mass center and inertia tensor of mass center that are defined 

as follows:  

 

i i i i
x y z

i i i
xx xy xz

i i i i
xy yy yz
i i i
xz yz zz

J J J

J J J J

J J J

      
 
 

  
 
 

 

2.2 Flexible Joint Robots modeling  

In the previous section the main subject was modeling of robots with rigid joints and links. But in practice, 
joints are made by a specific type of gearbox with elastic property so called Harmonic Drive. This property is 
usually modeled by a combination of spring - damper pair. Unlike the rigid robots, the generated torque in 
compact gear-boxed motor is transmitted through a spring - damper pair to the link. Therefore position and 
velocity of gearboxes shaft and links are always not equal in FJRs. So FJRs dynamics for a robot with n-link 
consists of two dependent separate differential equation with 2n Degree Of Free (DOF). According to spong 
modeling summarized equations for FJRs can be written as follows: 



a a a a a a a a

m a m a

m m m a m a

m m m

M (q )q C(q ,q ) g(q ) f (q )

K(q q ) D(q q )

M q K(q q ) D(q q )

f (q ) T

  
   

   
 

  
 

  


 

Where N
mq  and N

aq  are the position vector of gearboxes shaft and links. mT is affective output torque 

which is generated by compact gear-boxed motor. NK and ND are diagonal matrixes related to the 
coefficients of dampers  stiffnesses. In this equations, parameters of rigid body and kinetic are expressed by rb  

and kin that for simplicity in notation were omitted. af and mf are the frictions vector for the link and motor 

sides. Usually mf  has non-linear dynamics so that is reduced efficiency of the robot controller. In most cases af

can be ignored because of its low effect. A simple friction model, which includes viscous and coulomb frictions, 
is expressed as follows:  

 m v m c mf (q ) f .q f .sgn(q )     

This model is not used because of non-smooth form. Instead of (8) the other most used equation, which was 
proposed by Feeny and Moon is used as follows Error! Reference source not found.: 
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  
m v m

1
c k k m m

f (q ) f .q

f (1 )cosh ( .q ) tanh( .q )

 

    

 

 
 

Other several dynamics were also proposed for friction by researchers [12],[8]Error! Reference source not 
found..  

3. Feedback linearization and FJR dynamics 

Linearization techniques can be used to create a linear dynamics of nonlinear systems such as FJRs. Often 
feedback linearization as a fine and most used linearization technique is used for nonlinear cases. By using this 
method, nonlinear equations are converted to linear form so that a simple linear controller can be used to 
control. Usually in FJRs, the final controlled system has low stability and performance because of external 
disturbance inputs and parameter uncertainty so that feedback linearization can be used in neighborhood of 
equilibrium point. In this research, this problem is solved by using a new structure of robust feedback 
linearization. 

3.1 FJRs Space state equations  
At first, to complete the describing equations of FJR, the following equation as a approximate dynamic of 

actuator is added to (7):  

  1
m m m b 2T R .K V K    

Where NR  , N
mK  and N

bK  are the positive diagonal matrixes of ohmic impedance, armature 

current to torque and speed to back e.m.f voltage conversion constants respectively. This model has a linear 
structure and also dynamics of the electric section is ignored because of its high speed. By define 

m m 2 m mf (q ) f (q ) B.q    , a 1q   and m 2q   and by replacing (10) in (7) the equations of FJRs dynamics is 

rewritten as follows:  

 a 1 1 a 1 1 a 1

a 1 C

M ( ) C ( , ) g ( )

f ( ) T

      

  

 

  (11.a)

 C 2 1 2 1T K( ) D( )        (11.b)


 1

m 2 m b 2 2 2

1
C m m

M B R K .K f ( )

T R K .V





     

 

  
 (11.c)

Now 2 is calculated from (11.a) and (11.b) as follows:  

 2 1 2 1 1 1 1 1D( ) N ( , , )               

then 2 and 2  are obtained: 



(3)

(3) (3) (3) ( 4 )

12 1 2 1 2 1 1 1

1
2 1 1 12 1 3 1 1 1 a1

D( ) N ( , , , )

D( ) N ( , , , ) K M

           

             

     

   
 

Where 1N , 2N and 3N  are as follows:  


(3)

(3)

1
1 a 1 a a a

1
12 a1 1 a a1 a1 a1

1
13 a 2 1 a1 a 2 a 2 a 2 a 2

N K (M C g f )

N K (M M C g f )

N K (M (M M ) C g f )







    

      

       








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Also a1M , a2M , a1C , a 2C , a1f and a1f are defined as follows:  



1
a1 1 1

2
1

a2 1 1 1 2

dM( )
M ( , )

dt

d M( )
M ( , , )

dt


  


   



 
 (15.a)


( 3)

a 1 1
a1 1 1 1

2
a 1 1

1a 2 1 1 1 2

dC ( , )
C ( , , )

dt

d C ( , )
C ( , , , )

dt

 
   

 
    

 

 
 (15.b)



a 1
a1 1 1

2
a 1

a 2 1 1 1 2

dg ( )
g ( , )

dt

d g ( )
g ( , , )

dt


  


   



 
 .c)



a 1
a1 1 1

2
a 1

a 2 1 1 1 2

df ( )
f ( , )

dt

d f ( )
f ( , , )

dt


  


   

 

  
 .d)

Now by replacing 2 and 2  from (13) in the third equation (11.c) and also with the definition:  


 
 

11
z m a1

1
m m b

M M K M

B B R K .K







 
                       

We will:  



 

( 4 ) (3)

(3)

1

1 2 1

1 14 1 1 1 1

f ( )

25 1 1 2 6 1 11 m

ud , g( )

N ( , , , , )

N ( , , , ) N ( , ).V



  

       

      

  

   
      

Where 4 5N , N ,and 6N are defined as follows:  



(3)

(3)

1m m 2

4 z m a m 1

m 1 a a a 2

25 z m m 2

1
6 z m

M D B N

N M (M M B D)

B C g f f

N M M D B D

N M R K

    
      
 
     
  

      






      

By define system state vector as follows:  

  
( 3)

11 2 3 4 1 1 1x x x x        
   
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Equation (17) in state space is written as follows:  



(3)

1 2

2 3

3 4

24 2

x x

x x

x x

x f (x) d(x, , ) g(x).u






    







 

3.2 Feedback Linearization and Uncertain modeling  

In most non-linear systems using feedback linearization leads to simple controller, but the stability of 
linearized system is strongly dependent on the equilibrium point and instability may occur in system because of 
parameters uncertainty and disturbance. The uncertain model for  4th equation of (19) can be rewritten as 
follows:  

  
(3)

24 2x f (x) f (x) g(x) g(x) .u d (x, , )          

Where f (x) and g(x) are expression of dynamics of uncertain parameters on the system. 

(3)

22d(x, , )   is 

replaced with 
(3)

22d (x, , )   because of the effect of parameters uncertainty. Now by define 
(3)

22w(x,u, , )  as 

follows:  


(3) (3)

2 22 2w(x,u, , ) f (x) g(x).u d (x, , )           

The 4th equation of (19) will be:  


(3)

24 2x f (x) g(x).u w(x,u, , )      

Now by choosing u as:  

  1
1u g (x) v f (x)   

And by replacing (24) in (23), describing equations of          n-Link FJR can be rewritten as below:  



(3)

1 2

2 3

3 4

24 1 2

x x

x x

x x

x v d(x, u, , )






   







 

Where 1v  is new input control vector. The final linearized system has a n-decupled linear dynamics and 

nonlinear dynamics because of disturbances and parameters uncertainty as follows: 

  

(3)

i i i

2i 2

i i

00 1 0 0 0
00 0 1 0 0

x x v 00 0 0 1 0

0 0 0 0 1 d (x,u, , )

y 1 0 0 0 x

i 1,2,..., n

    
    
           
    
       









 

Equations (25) show that the linearized system still has nonlinearity on uncertain dynamics. There are two 
recommended method to design a robust controller based on H∞ theory for n-link FJR. The primary technique is 
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using a unique  L-H∞ controller with (25) and the other is using n-single independent NL-H∞ controllers with 
(26). However a unique NL-H∞ based on (26) will have higher performances, but in practical it is not 
recommend because of  complexity of its control law and delay of calculation.  

4.  NL-H∞  controller design 

By use of (26), an independent controller based on NL-H∞ theory is designed for any link of n-link FJR so 
that designed controller for ith link is only dependent to ix vector. Equations (26) must be rewritten as a new 

form because of compatibility with structure of NL-H∞ theory. It is also assumed that all states of linearized 
system are full available. Therefore equations of ith link can be described in state space form as follows [14]:  

 i i i i i i i i

i i i i i i

x A x g (x )w B v

z h (x ) l (x )v

  
 


 (27)

Where 
4

ix R is the system state vector, im
iw R is the disturbance input vector, 1

iv R is the new control 

input vector and ip
iz R is the penalty vector. Also it is assumed that functions i i i i i ig (x ),h (x ), l (x )  are defined 

and smooth in the neighborhood of X  on 4R . 

4.1 uncertain modeling 

In this paper, tolerances of mechanical and electrical parameters such as mass and length of link and 
resistance and inductance of motor are considered as main uncertain sources, because these parameters can be 
usually changed. It is also assumed that measuring of fixed mechanical and electrical parameters in compact 
motor and gearbox have been done with sufficient precision. Tolerance of any parameter can be defined as 
follows: 


un ij 0 ij ij ij

1
un ij 0 ij ij ij

P P (1 w )

or P P (1 w )

 


 

  

  
 (28)

If deviation term of any parameter appears as dominator, second equation of (28) can be used. Where ij  are 

positive numbers as maximum deviations of uncertain parameters. Also ijw  are virtual external input signals 

which are limited by ijw 1 . Therefore iw  is defined as follows: 


 

T

i i1 ip ijh ijh...m d 1 q
w w ,..., w ,..., w ,..., w ,..., x

j, h,...,m 1,..., p


   


 (29)

Where indexes 'p' and 'q' are the number of uncertain parameters and inputs which are as external 
disturbances. In some equations may be terms that have product of two or more external inputs such as 

i1 i2 i1 i2 imw .w (or w .w ...w ) . In these cases, they can be replaced by i12 i12...mw (w ) as a new external input. The 

term i i ig (x )w  in (27) can be replaced as follows [14]:  


q

i i i ij i ij
j 1

g (x )w g (x )w


   (30)

Where ij ig (x )  is obtained as follows: 


i ij

T

ij i ij i w 0 , w 1
g (x ) 0 0 0 d (x ) |  

     (31)

Also in this paper, i ih (x )  was selected as follow:  

  T

i i i1 i1 i2 i2 i6 i6h (x ) q x q x 0 0 0 q x  (32)

M.E.Akbari et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 2 Feb 2011 457



Where i6q  can be used as tracking accuracy setting, i1q  and i2q  can be used to adjust the response of system 

for having the least overshoot. It is necessary to say that i6q , i1q  and i2q  are often chosen experimentally. The 

following assumption is made to simplicity the controller designing process:  

 T
i i i i i2l (x )l (x ) R  (33)

Where i2R  is a nonzero constant value. Then NL-H∞ control law can be calculated as [14]:  

 1 T T
im i2 i ixV R B V   (34)

Where ixV  is the gradient of i iV (x )  which is a positive define function of ix  so that must satisfy locally the 

following differential equation in the neighborhood of origin in 4R . 


Tq

ij ijT 1 T T
ix i i i i ix i i2 i ix2

j 1 ij

g g1 1
V A x h h V ( B R B )V 0

2 2



   


 (35)

Hence attenuation of disturbance signals is done by i  scale. Because of non-linear nature of system, there is 

a low possibility to find a closed analytical solution for equation (35). In most cases, the numerical solution is 
used instead of the analytical solution. 

4.2  NL-H∞ controller by Taylor series  

As it was mentioned, in most cases NL-H∞  based control law is calculated by Taylor series. It means that 

i iV (x )  in (35) has the following structure [15]: 

 T [k]
i i i i i ik i

k 3

1
V (x ) x P x P x

2





   (36)

Therefore applied voltage to the motor of  ith link can be generated by: 

 [k]
im i1 i ik i

k 3

V Q .x Q .x




   

Where i1Q and ikQ can be calculated by using i ikP , P  and the proposed equations in [15]. 4 4
iP R   is a 

symmetric positive define matrix that is calculated by the following Riccati's equation:  


TT q

ij ijT T i i
i i i i i i i i

j 1i2 ij

B BB B
A P P A C C P ( )P 0

R 

    
  (38)

i ijC ,B are matrix and vector that can be produced by linearization of i ih (x ) and ij ig (x )  on equilibrium point 

as follows:  


[2 ]

i i i i i i

[1 ]
ij i ij ij i

h (x ) C x h (x )

g (x ) B g (x )





 

 
 (39)

[2 ]
ih (x)  consist of the second and higher order terms of  i ih (x )  and [1 ]

ij ig (x )  consist of the first and higher 

order terms of ij ig (x ) . Also [k ]
ix is generated by using the Kroniker product of the state vector of  ith link. 
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5. Single link  FJR  test-bed 

In order to analyze the proposed controller performance, it was simulated on the single link FJR model. In 
practical this case study has two main sections, electro-mechanic and control.  

 

Electro-mechanic section is split to compact gear-boxed DC motor as actuator, solenoid spring as torque 
transformer and lightweight plastic rigid link as arm. Controller section has four high speed micro-controllers. 
Gearbox-shaft and link positions are measured by high precision shaft encoders as measured output signals.  

5.1 System mechanical and electrical parameters  

Table (I) shows values of compact gear-boxed DC motor set electrical and mechanical parameters. 

 

Also, Table (II) shows values of link and spring mechanical parameters. Viscose friction coefficient is totally 
presented for system in Table (II).  

TABLE I 
COMPACT DC MOTOR AND GEARBOX SET PROPERTIES  

Parameters  Nominal 

values 

Tolerance 

Coil resistance  R=9 ohm  4% 

Torque const.  km=3.3  3% 

Back emf const.  kb=5.62  3% 

Motor inertia  J=2.15  3% 

Figure 1. Scheme of a practical single link FJR and controller  
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5.2 Single link FJR dynamics 

Dynamics of single link FJR is expressed as follows: 


1 1 v 1 c

c 2 1 2 1

m b m
2 2 c m

I mglsin( ) f U

U K( ) D( )

K K K
J B U V

R R

 

 

 

     

       

       
 

 (40)

By below assumptions: 

  1 2 3 4 1 1 1 1x , x , x , x , , ,          (41)

Equations (40) can be rewritten in state space form as follows: 



1 2

2 3

3 4

4 L NL m 2 2

x x

x x

x x

x f (x) f (x) g(x).V d(x, w, , )






     





 

 (42)

Where L NL 2 2f (x), f (x),d(x, w, , )   and g(x) are define as follows: 



L 1N 4 2N 3 3N 2

NL 1 2N 2 1

2
2 1 3 1

2 2 1N 1 4 1 2N 2 3 2

3N 3 2 3 1 1 4

2N 2 2 1 5

2
3 2 1 3 1 6

4 7 2 5 8

f (x) a x a x a x

kmgl
f (x) sin x b x cos x

JI
mgl

( x sin x x cos x )
I

d(x, w, , ) a x w a x w

kmgl
a x w sin x w

JI
b x cos x w

mgl
( x sin x x cos x )w

I
D

w c w
I

g

 

   

  

  

      

   

 

   

   

mKK
(x)

JIR


 (43)

TABLE II 
LINK AND SPRING PROPERTIES   

Parameters  Nominal values  Tolerance 

Link Length  l=0.53  6% 

Link mass  m=0.12  9% 

Gravity  coefficient  g=9.8  1% 

Inertia  I=0.083   4% 

FJR Total Viscose const.  Fv=1.53  ‐ 

Joint stiffness  K=3.33, D=1.2   

M.E.Akbari et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 2 Feb 2011 460



In (43), 2 2d(x, w, , )   can be replaced with d(x, w) by assumption 2 2 4 7 5 8[ , ] [ w , w ]      . Where 4 and 5 are 

define for worst conditions of 22  and 2 as follows: 

 4 2

5 2

Max( )

Max( )

  

  


  (44)

Also 1N 2N 3N 1N 2N 3Na ,a ,a ,b ,b ,b and 1 2c ,c are defined by using system mechanical and electrical parameters ( see 

appendix). Where 1 2 3, ,   and 1 2 3, ,   are calculated using Tables (I,II) which their values are also shown in 

appendix. Now by choosing  mV  as below: 

 1
m NLV g (x)(u f (x))   (45)

Equation 4x of (42) can be converted as semi linear form as follows:  

 4 Lx f (x) u d(x, w)     (46)

Dynamic of uncertain parameters is expressed by d(x, w)  as below: 


8

i 4 1 i
i 1

d(x, w) d (x) w


   (47)

Where id (x)  are disturbance vectors which are functions of iN iN i i ia , b ,c , ,  and system states. All id (x)  are 

shown in appendix.  

6. Simulation Results 

In this section, it is shown that the proposed technique has advantages by using simulation outputs for some 

input commands ' ' ' ' '
dx [90 ,120 ,150 ,160 ,180 ] . Link position, tracking error, motor applied voltage are 

considered in  subsection 6.1. Frequency response and effect of external disturbance and parametric 
uncertainties are also presented in subsections 6.2-6.3.  

6.1 Simplified nonlinear H∞   and linearized model 

In order to show advantages of proposed feedback linearization controller a number of tests were done on 
single link FJR with m=0.7kg  and L=0.55m. Fig. 5 shows response of proposed controller and nonlinear H∞ 

controller for ' ' '
dx [90 ,120 ,180 ] . Also it shows link angle was settled to input command at t=5s by proposed 

controller, but it has high overshoot for '
dx [180 ] and delay for '

dx [90 ] with nonlinear H∞ controller. 

Tracking error for ' '
dx [90 ,180 ] are shown in fig.6. Tracking error of '

dx [180 ] has higher value with 

nonlinear H∞ controller because of bad overshoots, but  
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for '
dx [90 ] has less value because of overdesign view. Motor applied voltage for '

dx [180 ] is shown in fig. 

7. As it shows, applied voltage has more altering and larger positive and negative peeks with nonlinear H∞ 
controller compare to proposed controller. Thereupon, it is seen that proposed controller has more advantages 
compare to nonlinear H∞  specially  around of link position '180 . 

 

Figure 7. Motor applied voltage for 
'

d
x [180 ]  

Figure 6. Link position tracking error -proposed controller line and  N-
LH∞ dashed  

Figure 5. Link position - proposed controller line and N-LH∞ dashed  
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6.2  disturbance and frequency response 

Fig. 8 shows response of controlled system to impact forces, which are applied to link, as external disturbances 
for '

dx [60',90 ',180 ] . As it shows the effect of impacts are compensated at less than 5s  for  dx [60 ',90 ']  but 

it be continued for long time for  dx [180 '] . Certainly it is predictable that high energy disturbances can be 

generated instability for around of link position 180'. Fig. 9 shows frequency response of linearized system by 
feedback linearization method. Unlike to theory which linearized system has four repetitive poles.  

 

In addition to four repetitive poles, simulated model presents a number of zeros and poles around of 0.3Hz and 
0.45Hz. 

6.3  Model parameters uncertainties  
Robustness of the proposed controller are verified by a number of simulation with parametric uncertainty on 

m*l, J and K. Fig. 10 shows the step response of link position to '
dx [90 ,160 '] which link has both mass and 

length uncertainty. Fig. 10 implies that system has robustness on tolerance of multiply of mass and length at 
least to ±50% . Fig. 11 shows the step response of controlled system to '

dx [90',150 ] with ±20% tolerance of J 

(motor moment inertia ). The effect of uncertainty of the joint stiffness (K) as other significant parameter is 
shown at fig. 12 for different commands. Figs. 10,11,12 show that controlled system has robustness for ±20% 
tolerance of mentioned electrical and mechanical parameters.  

Figure 9. Linearized system frequency response 

Figure 8. Link response to external disturbances 
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In all tests, link position has more ringing because of low stiffness of coupling spring. The results of Figs. 10-12 
show that the proposed controller can guarantee the system stability against parameter tolerances and external 
disturbances. 

Figure 12. Link position with uncertainty on K  
 

Figure 11. Link position with uncertainty on J  

Figure 10. Link position with uncertainty on m*l 
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7. Conclusion   

This paper proposed a new approach to feedback linearization of nonlinear systems which have uncertain 
modeling such as FJRs. In this paper, the friction model is expressed with a continues and derivable equation. 
Also damper property of coupling is taken into account. Also in this paper the simplified NL-H∞ theory based 
control law was used to control  FJRs. The effect of parameters uncertainty and external disturbances were 
expressed by a nonlinear independent term in proposed linearzied dynamics. The results of simulations showed 
that single link FJR can be controlled by L-H∞ theory because of linear structure of final dynamics with extra 
nonlinear term as parameters uncertainty.  Moreover, simulation results of proposed controller on single link 
FJR showed that feedback linearization approach and simplified NL-H∞ based controller has ability to stabilize 
and control even on unstable domain with acceptable performance. Also simulation results showed that 
proposed approach is more efficient than the NL-H∞ based controller with nonlinear dynamics. The proposed 
approach can be applied to any multilink flexible on unstable area with a good performance.   
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Appendix: 

 

TABLE III 
VALUES OF UNCERTAIN COEFFICIENTS 

1 0.12    2 0.1    3 0.2   

1 0.12    2 0.1    3 0.2   

3
rad

4 s
0.23    2

rad
5 s

0.43   

M.E.Akbari et al. / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 3 No. 2 Feb 2011 465



 

 

TABLE IV 

THE VECTOR OF id (x)  

1 1N 1 4d (x) a x   2 2N 2 3d (x) a x  

3 3N 3 2d (x) a x   4 1N 1 1d (x) b sin x  

5 2N 2 2 1d (x) b x cos x   7 1 4d (x) c 

8 2 5d (x) c   

2
6 3N 3 2 1 3 1d (x) b ( x sin x x cos x )      

TABLE V 

THE VECTOR OF iN 2N 2a , b ,c  

m b
1N

BR K K D
a

JR I


    m b

3N

K(BR K K )
a

JIR


  

m b
2N

(J I)KR D(BR K K )
a

JIR

  
  

m b
2N

mgl(BR K K )
b

JIR


   b m

2

D(BR K K )
c

JIR


  
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