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Abstract- In this paper we investigate the different techniques of fault tolerance which are used in many 
real time distributed systems. The main focus is on types of fault occurring in the system, fault detection 
techniques and the recovery techniques used. A fault can occur due to link failure, resource failure or by 
any other reason is to be tolerated for working the system smoothly and accurately. These faults can be 
detected and recovered by many techniques used accordingly. An appropriate fault detector can avoid 
loss due to system crash and reliable fault tolerance technique can save from system failure. This paper 
provides how these methods are applied to detect and tolerate faults from various Real Time Distributed 
Systems. 
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I. INTRODUCTION 
 
A faulty system due to any reason during processing some task can causes some damages. A task running on 
real time distributed system should be feasible, reliable and scalable. The real time distributed system such as 
nuclear systems, robotics, air traffic control systems, grid etc. are highly dependable on deadline. A fault in real 
time distributed system can result a system into failure if not properly detected and recovered at time. These 
systems must function with high availability even under hardware and software faults. Fault-tolerance is the 
important technique used to maintain dependability in these systems. Hardware and software redundancy are 
well-known effective methods. Hardware fault-tolerance achieved through applying extra hardware like 
processors, communication links, resource (memory, I/O device) whereas in software fault tolerance tasks, 
messages are added into the system to deal with faults. Fault should be detected by applying reliable fault 
detector followed by some recovery technique. Many fault detection techniques are available but it is necessary 
to apply appropriate fault detector. Unreliable fault detector can make mistake by erroneously suspecting correct 
process or trusting crashed process. Rest of the paper is organized as: Types of fault are discussed in section II, 
Issues are explained in next section III and then the system behavior is explained in section IV. The approaches 
used to failure detection and fault tolerance are explained in section V and section VI respectively. Section VII 
concludes the paper followed by future work in next section. 
 

II. TYPES OF FAULT 
 

There are different types of fault which can occur in Real-Time Distributed System. These faults can be 
classified on several factors such as: 
Network fault: A Fault occur in a network due to network partition, Packet Loss, Packet corruption, destination 
failure, link failure, etc.  
Physical faults: This Fault can occur in hardware like fault in CPUs, Fault in memory, Fault in storage, etc.  
Media faults: Fault occurs due to media head crashes.  
Processor faults: fault occurs in processor due to operating system crashes, etc. 
Process faults: A fault which occurs due to shortage of resource, software bugs, etc.  
Service expiry fault: The service time of a resource may expire while application is using it. [1], [2], [3], [4], [5]. 
 
A fault can be categorized on the basis of computing resources and time. A failure occurs during computation on 
system resources can be classified as: omission failure, timing failure, response failure, and crash failure. Fault 
occurs with respect to time are shown in figure 1 as: 
 
Permanent: These failures occur by accidentally cutting a wire, power breakdowns and so on. It is easy to 
reproduce these failures. These failures can cause major disruptions and some part of the system may not be 
functioning as desired.  
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Intermittent: These are the failures appears occasionally. Mostly these failures are ignored while testing the 
system and only appear when the system goes into operation. Therefore, it is hard to predict the extent of 
damage these failures can bring to the system.  
Transient: These failures are caused by some inherent fault in the system. However, these failures are corrected 
by retrying roll back the system to previous state such as restarting software or resending a message. These 
failures are very common in computer systems. 

 
                             Figure.1:  Types of fault in a system 
 
Main focus is on hardware fault tolerance in real time distributed system. Software fault tolerance is often 
overlooked. This is really surprising because hardware components have much higher reliability than the 
software that runs over them. Most system designers go to great lengths to limit the impact of a hardware failure 
on system performance. However they pay little attention to the systems behavior when a software module fails. 
There are many different techniques for software fault tolerance (e.g. time out, audits, task rollback, exception 
handling, and voting). Most Real time systems must function with very high availability even under hardware 
fault conditions. The most useful hardware fault tolerance techniques are redundancy and load sharing. For 
tolerating any fault from the system first we require to detect the fault occurred in the system and then isolating 
it to the appropriate unit as quickly as possible. The main detection mechanisms are: Sanity Monitoring, 
Watchdog Monitoring, Protocol Faults, In-service Diagnostics, and Transient Leaky Bucket Counters. If a unit 
is really faulty, many fault triggers will be generated for that unit. The main objective of fault isolation is to 
correlate the fault triggers and identify the faulty unit.  
 

III. ISSUES 
 

In a distributed real time system or in general, fault tolerance [10] is the technique to give the required services 
in the presence of fault or error within the system. The aim is to avoid failures in the presence of faults and 
provide services as per requirement. In fault tolerance the fault is detected first and recovers them without 
participation of any external agents. The main issue in fault tolerance is how, where, and which technique is 
using to tolerate fault in distributed system. As we have seen many type of fault and failure arises in a system, so 
there should be an appropriate method which can tolerate such problem. In this paper will we will see various 
technique for tolerating different fault.  
In any real time distributed system there are three main issues.  

1. Feasibility- this means that a task running should be finished on its deadline even though there is a 
fault in the system. Dead line in real time system is the major issue because there is no meaning of such 
a task which is not finishing before its deadline. So the question is that which method is to be applied 
by which the task can finish on deadline in the presence of fault. 

2. Reliability- in real time distributed system reliability means availability of end to end services and the 
ability to experience failures or systematic attacks, without impacting customers or operations. 

3. Scalability –it is about the ability to handle growing amount of work, and the capability of a system to 
increase total throughput under an increased load when resources are added. 

Now the question arise how these faults can be detected and removed or tolerated from different environment. A 
task running in distributed environment should be finished on its deadline. It may be hard or soft depend on task 
requirement. In hard deadline a task should be finished by its deadline sharply but in soft deadline task can 
finished nearby its deadline.   

IV. FAILED SYSTEM BEHAVIOR 
 
What will happen if a system failed? What are the affects of a system failure? Such behavior of a system has 
been explained in [13]. A system can behave after failure in three ways such as 
 

 Fail Stop System 
 Byzantine system 
 Fail-fast system. 
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In fail stop system there is no output when a system fails. It immediately stops to sending any message or event 
and also does not respond any message receiving on network. Any failure in a system in fail stop manner can 
results a permanent fault in the system. Byzantine systems are those systems which not stop after failure but 
gives wrong output. These systems continue working without desired output.  They may send wrong output or 
may respond later results transient type of fault. In Fail-fast system the system behaves like a Byzantine system 
for some time but moves into a fail-stop mode after a short period of time. It does not matter what type of fault 
or failure has caused this behavior but it is necessary that the system does not perform any operation once it has 
failed. 
 

V. FAILURE DETECTION 
 
Failure detection is the main issue in any system. Selecting a dependable failure detector is very difficult task. 
For detecting a fault accurately, a reliable fault detector is required. It can be removed by applying appropriate 
removing techniques. Reliability of fault detector and fault recovery method is depending upon the type of fault.  
For removing a fault/failure from the system it has to be detected first and then fault tolerance technique can be 
applied. Many failure detections have been explained in various papers as an independent service [19], [20], 
[21], [24], [25]. Many researchers have given fault detector for distributed system also. A failure detector has to 
provide good quality of service (QoS) but it is so far. Many schemes have been applied but none of them resolve 
it properly. A failure detection service must adapt to dynamic network conditions and application requirements. 
The failure detection service is implemented via variants of the Heartbeat mechanism [22]. The heartbeat 
mechanisms are as follows: Centralized, Virtual ring based, All-to-all, and Heartbeat groups. 

 
VI. APPROACHES OF FAULT TOLERANCE 

 
There are many approaches for fault tolerance in real time distributed system. A fault can be tolerated on the 
basis of its behavior or the way of occurrence. Following are the methods of fault tolerance in a system. 

1. Replication 
a. Job Replication 
b. Component Replication 
c. Data Replication 

2. Check-pointing 
3. Scheduling/ Redundancy 

a. Space Scheduling/ Redundancy 
b. Time Scheduling/ Redundancy 
c. Hybrid Redundancy 

A.   Replication  
Replication, is the process of sharing information by which it can ensure consistency between 

redundant resources (i.e. software or hardware components), to improve reliability, fault-tolerance, or 
accessibility. Job replication is the method of replicating job on multiple server such as in grid computing 
service is capable of receiving jobs, executing them, performing checksum operations on them, and sending the 
result back to the client [2], [14]. Figure 2 shows a distributed network in which every server S can 
communicate to each other and each server is connect to multiple clients C. A job can be distributed to servers 
for operation and result is back to the client. Data Replication is also commonly used by fault tolerance 
mech-anisms to enhance availability in Grid like environments where failures are more likely to occur. 
 

    
          Figure 2. Distributed system with multiple client and server 
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In this data is stored on multiple storage devices as a replica. Data replication may be synchronous or 
asynchronous depend upon data consistency. Components are replicated on different machines, and if any 
component or machine fail, then that application can be transferred and run on another machine having the 
required components [23]. 
 
B.  Check-pointing 

It is the process to saving from complete execution of a task. It checks the acceptance test, if fail then 
go to previous checkpoint instead of beginning. A check point may be system level, application level, or mixed 
level depends on its characteristics [15]. Check-pointing is also categorized on the basis of In-transit or orphan 
message as shown in figure 3. These are Uncoordinated Checkpointing, Coordinated Check-pointing, and 
Communication-induced Check-pointing. Check-pointing also can be classified is based on who instruments the 
application that do the actual capturing and re-establishing of the application execution state. These are Manual 
code insertion, Pre-compiler check pointing, Post-compiler check-pointing [16], [17].  

 
Checkpointing 

 
 
 
 

Figure 3. Types of Check-pointing 

 
A check point may be local or global on the basis of their scope. Check-point for separate process is local check-
point and a check-point applied for set of processes is called global check-point. Check-pointing have some 
demerits such as Check-pointing causes execution time overhead even if there are no crashes. The cost of 
writing check-point data to stable storage whenever a check-point is taken is called the check-pointing cost [26]. 

 
C. Scheduling  

It is also one of the methods to tolerate fault from distributed system [3], [9]. It is used to overcome the 
drawback of check-pointing in distributed environment. It is categorized as time-sharing scheduling, space-
sharing scheduling, and hybrid combination of both. Scheduling is used for load balancing as well as fault 
tolerance in distributed system on the basis of space or time sharing [11], [18]. There are three approaches of 
scheduling such as space, time, and hybrid. Space scheduling is used to tolerate permanent or hardware type of 
fault from a system. The Primary-Backup approach is applied in space redundancy. Time redundancy is used 
when there is intermittent type of fault in the system. And hybrid redundancy is used when both are required 
[12]. 
 
There are some important methods for tolerating fault in various systems given by many authors in their 
research. According to Alain Girault et al. [1] the Algorithm Architecture Adequation (AAA) method will 
generate a static code automatically for real time distributed embedded system. This method basically used for 
processor failure with fail stop behavior. There are two main scheduling techniques (offline, online) used in 
software or hardware failure of a system. Offline is one mostly preferred in real time embedded system [2]. 
Offline scheduling is preferred because there can be two types of failure: fail-silent and omission which can be 
tolerated by replication of operations and data communications. In replication the scheduling technique is based 
under the state-machine and the primary/backup arbitrations between replicas and in communication we assume 
that different communication uses distinct buffer. 
TERCOS and DEBUS are the best approaches used to exploiting redundancies in Fault-Tolerant and Real-Time 
Distributed Systems [3], [4]. These techniques are based upon off line scheduling for exploiting redundancy in 
which Tercos can be significantly improve schedulability by up to 17.0% (with an average of 9.7%). and  
empirical results reveal that Debus can enhance schedulability over Tercos by up to 12% (with an average of 
7.8%). 
Most of the scheduling algorithms are based on the primary–backup scheme for periodic real-time tasks, 
introduce unnecessary redundancies by aggressively using active-backup copies but these algorithms are based 
upon fixed-priority to enhance schedulability. Some of the basic algorithm like RMFF uses the WCRT in which  
primary copy and backup copies are of same size to check the schedulability of task and determine the status of 
backup copies executes in passive form. In Tercos, the WCRTs of primary copies are always less than or equal 
to the WCRTs of the corresponding backup copies in which by using best-fit approach we can enhance the 
schedulability. 
The technique known as online scheduling has been explained in MPI-FT to tolerate fault in MPI [5]. In this 
authors propose the mechanism for detecting process failure and there recovery mechanism in case of failure. In 
monitoring process, each process keeps a buffer with its own message traffic to be used in case of failure and the 

  Un-coordinated  Coordinated Communication-induced 
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implementer uses periodical test for notification of failure. For recovery all the communications of processes are 
simulating with dead one and solution is provided for dead process. 
Processor and communication link failure can be tolerated by using offline scheduling technique and generate a 
fault tolerate distributed schedule. In this the algorithm based upon graph transformation can tolerate fixed 
number of arbitrary processor and communication link failure [6]. The graph is data flow graph shown in figure 
4. in which the each vertex is an operation and each edge is data dependence.  
 
 
   
 
         
 

 
           Figure 4. A data dependence graph. 

 
“Authors propose to use graph transformation to perform software redundancy, where a given input algorithm 
graph (Alg) is transformed into a new algorithm graph (Alg *) augmented with redundancies. Then, operations 
and data-dependences of Alg * can be distributed and scheduled on a specified target distributed architecture 
(Arc) to generate a fault tolerant distributed schedule” [6]. 
 
Tolerating fault in a dynamic grid environment such that link down or resource failure is very frequent. Fault 
occurs in Hierarchical dynamic scheduler (HDS) for grid workflow applications can be tolerated [8]. In HDC all 
the resources are arranged in hierarchical tree manner which works as a scheduler. The root failure of the tree 
can be tolerated by randomization of multiple simultaneous. When the root failure is tolerated then the important 
thing is to maintain the tree. For that authors start from initial tree with satisfying some properties as fault 
detection, recovery, (handling child failure and handling parent failure), information coherence (node join, node 
failure, etc) [7]. Handling of messages in the presence of failures is also there in which different types of 
massages are handled such as Record path and randomization, Acceptance message, Deadline violation 
message, Signal execution message and Role of portal and root failure. 
As we show the many methods are there for tolerating fault in a grid [5] [6] [7] [8]. But all of these are for link 
failure, resource failure, etc. Job scheduling is one of the method in grid computing for scheduling a task. The 
fault can be occur in loosely coupled job scheduling with job replication scheme such that jobs are efficiently 
and reliably executed can be tolerated [10]. 
 

VII. CONCLUSION 
 
To conclude this paper, we can say that it is very different to detect a fault in distributed system as compare with 
uniprocessor. Fault tolerance techniques are also depending upon its occurrence. In this paper we explore 
various reliable fault detection and fault tolerance methods.  There are three things in real time distributed 
system which should be kept in mind when fault tolerance is applying. These are reliable, scalable and feasible. 
In real time distributed system feasibility of a task is much important because there is a dead line defined for 
every task and the task should be finished on or before its deadline even there is a fault in the system.   
 

VIII. FUTURE WORK 
 
We have seen many fault detection and recovery technique but the very basic question arises in mind, are these 
reliable? Are these working efficiently in real time scenario? Are these working properly on different 
architecture? Are two nodes which are not directly connected can detect each other properly? Is the technique 
which is tolerating fault on real time, feasible? These are the things which can be explored in future research. 
The work can also be explored for Ad-hoc network.  
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