
Two-Level Dynamic Load Balancing
Algorithm Using Load Thresholds and

Pairwise Immigration
Hojiev Sardor Qurbonboyevich

Department of IT Convergence Engineering
Kumoh National Institute of Technology,

Daehak-ro 61, Gumi, Gyeongbuk, South Korea
sardor_hq88@mail.ru

Tae-Young Choe
 Department of Computer Engineering

Kumoh National Institute of Technology,
 Daehak-ro 61, Gumi, Gyeongbuk, South Korea

 choety@kumoh.ac.kr

Abstract—This paper proposes a two-level dynamic load balancing scheme for grid and distributed
systems. We focus on reducing average task response time. In order to achieve the goals, efficient
dynamic load balancing is required. What make difficult dynamic load balancing are decisions such that
how much loads are migrated, and to which nodes the loads move. We simplified task immigration
through pairwise immigration based on two load thresholds scheme. We compare the proposed scheme
with HDLA algorithm proposed by B. Yagoubi et al. Experiments show that our algorithm reduces
average response time to about 3% compared to that of HDLA algorithm.
Keywords-dynamic load balancing; hierarchical cluster level; multiple thresholds; pairwise immigration

I. INTRODUCTION
Current computing architectures have allowed the popularity of grid computing. Grid technology is a type of

distributed system which supports the sharing and coordinated use of resources, independently of their physical
type and location, in dynamic virtual organizations that share the same goal [2]. The grid allows the use of data
intensive applications, research of DNA sequences, molecular dynamics, protein biosynthesis, etc [3].

Two major parties in grid computing, namely resource consumers (users) who submit various applications
and resource providers who share their resources, usually have different motivations when they join the grid.
These incentives are presented by objective functions in scheduling. While grid users basically deal with the
performance of their applications such as cost of CPU power to run a particular application, resource providers
usually pay more attention to the performance of their resources such as the resource utilization in a particular
period. Thus, objective functions can be classified into two categories [4]: application-centric and resource-
centric.

Application-centric (application-level) objective function aims to optimize the performance of each
individual application. Most of current grid applications concern about execution time, such as the makespan or
response time.

Resource-Centric (system-level) objective functions aim to optimize the performance of resources.
Resource-centric objectives are usually related to resource utilization, for example:

• Throughput which is the number of completed jobs in a given period.
• Utilization which is the percentage of time when the node is busy.

We focused on decreasing response time because the criterion is highly sensitive to users and the amount of
resource is widely available in the case of grid or cloud computing systems.

It is known that a grid is composed of heterogeneous nodes and users dynamically submit tasks. Such
environments require different QoS to grids. They lead to a situation that some nodes are overloaded and some
of them are under-loaded during their operations. Overloading and under-loading ill-affect to average response
time. In order to reduce the average response time, load balancing should be applied to grid system. In classical
parallel and distributed systems, load balancing algorithms usually run on homogeneous and dedicated resources.
Such traditional algorithms cannot work properly in grid architectures because a grid has a lot of specific
characteristics like heterogeneity, autonomy, dynamicity, and scalability, which make the load balancing
problem more difficult [5]. The goal of load balancing is to increase the overall system performance by

Hojiev Sardor Qurbonboyevich et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 04 Apr 2013 211

balancing loads at the resources or by forwarding loads to lightly weighted resources. Load balancing has been
intensively studied for more than two decades as an interesting topic [6-9].
We propose a load balancing scheme that has following features:

1) The scheme runs on grid system with two-level hierarchical architecture. Hierarchical structure is a
natural choice because a grid system is composed of thousands of nodes and tens of clusters.

2) In each level the proposed scheme uses two thresholds for deciding under-loaded and overloaded nodes.
Two thresholds reduce the amount of immigrated tasks than schemes that make nodes have same loads.

3) We assume that grid system can expect exact processing times of tasks. Real-time systems satisfy the
assumption. If a grid system executes small type of tasks repeatedly, it can expect processing time after
some iteration.

4) The scheme uses pairwise immigration, which simplifies message transfer and reduces the amount of
messages.

The rest of the paper is organized as follows. Section II presents previous works related to dynamic load
balancing in distributed and grid systems. Section III describes a hierarchical grid model where our scheme is
applied. Proposed dynamic two level load balancing strategy and simulation result are presented in Section IV
and Section V, respectively. Finally Section VI gives short conclusion and some information about future works.

II. RELATED WORKS
Belabbas et al. proposed a hierarchical dynamic load balancing algorithm HDLA [1]. The objective of

HDLA is to reduce average response time of tasks and their transfer cost. HDLA runs on two-level hierarchical
architecture. A cluster is a group composed of nodes and a cluster manager, and a grid is a group composed of
clusters and a grid manager. The first level is a cluster, and the second level is a grid.

In the algorithm, sum of task processing times of an entity is the workload index of the entity. The entity is a
node if the workload index is used by cluster manager, and it is a cluster in the case of grid manager. The paper
defines the workload index of an entity as ௅ை஽ௌ௉஽ , where LOD is sum of tasks size in the entity and SPD is the
CPU power of the entity. In order to decide whether an entity is balanced or not, two level thresholds on the
workload index are suggested: higher threshold ௛ܶ ൌ ܺܧܶ ൅ ߜ · and lower threshold ௟ܶ ߝ ൌ ܺܧܶ െ ߜ · where ,ߝ
TEX is an average workload index in the level, ߜ is a standard deviation of workload index in the level, and א ߝ
[0-1] is a value that decides the range of balance. If load of a node is greater than higher threshold, the node is
called overloaded. If load of a node is less than lower threshold, the node is called under-loaded. Otherwise, the
node is called normally loaded.

A situation that a workload exceeds the capacity of a group, that is CPUs are fully utilized and some tasks
are waiting in queues, is called saturated. In the case, HDLA does not start load balancing in the group since its
elements will remain overloaded. Terms Supply and Demand are introduced to decide immigration. Supply is ∑ ሺ ௟ܶ െ ஼ೠא௡ሻ௡݀ܽ݋݈ , and Demand is ∑ ሺ݈݀ܽ݋௠ െ ௛ܶሻ௠א஼೚ , where Cu is a set of under-loaded entities in a group C,
and Co is a set of overloaded entities in a group C. When ܵ݀݊ܽ݉݁ܦ/ݕ݈݌݌ݑ ൐ ,then tasks immigration start ߩ
where threshold ρ is set to 0.75.

HDLA has some limitations. First, it does not manage heavily overloaded nodes when its group is saturated.
Second, if the amount of supply is not sufficient for the amount of demand, HDLA algorithm does not provide
load balancing.

Malarvizhi and Rhymend proposed another hierarchical load balancing algorithm [11]. When a task is
submitted by a user, a local scheduler defines maximum share of every node in its cluster, where maximum
share of a node is the number of tasks that the node can execute without being overloaded. That is, for node s in
cluster m maximum share is

 ܴ௦௛௔௥௘ሺݏሻ ൌ ே·ோೞ಴஼೘಴ , (1)

where N is number of jobs arrived at cluster m, and ܴ௦஼ and ܥ௠஼ are capacity of node s and cluster m,
respectively. Here the capacity refers to the number of jobs a node or a cluster can process per second.

The number of tasks in a node is used as a workload index in the paper. To decide load state of the node, the
maximum share and the number of tasks in the node are compared. Unfortunately, the number of tasks is not a
good workload index when weights of tasks are different. A node can be overloaded even when the number of
tasks in the node is smaller than that in under-loaded node.

III. PROPOSED GRID MODEL
A grid is composed of multiple clusters and a cluster is composed of multiple nodes. A worker node or a

node is a processing entity. Nodes in a cluster are connected by high speed low latency communication links,
while communication links between clusters have low speed high latency property. So it is natural to construct
two-level hierarchical grid model as shown in Fig. 1.

Hojiev Sardor Qurbonboyevich et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 04 Apr 2013 212

Figure. 1. Proposed grid model

A cluster is mapped to local level and the grid is mapped to grid level in the architecture. For each cluster
there is a cluster manager that takes responsible for local load balancing. A grid manager is connected to a grid
gateway and it is responsible for grid level load balancing. Multiprogramming is applied to each worker node
for performance, and the maximum multiprogramming degree is pre-defined. Assume that a task is submitted to
a node. If the multiprogramming degree of the node is less than the maximum degree, the task is loaded into
memory of the node. Otherwise, the task waits in a queue of the node.

Each node is responsible for
- processing tasks, returning results,
- sending workload information to its cluster manager periodically,
- running received tasks or storing to queue, and
- migrating tasks to the cluster manager.
Each cluster manager is responsible for
- receiving workload information from nodes, estimating workload its cluster, sending it to the grid

manager,
- receiving immigration order from the grid manager, redistributing immigration orders to nodes,
- forwarding migrated tasks from nodes to target nodes in the cluster,
- making a decision to begin local load balancing, and ordering nodes to make task immigration.
At the grid level, grid manager responsible for
- receiving workload information of clusters from cluster managers,
- deciding to start grid load balancing, and ordering to cluster managers.

IV. PROPOSED LOAD BALANCING SCHEME
Before explain our algorithm we give some notations used in the paper.
A. Some notations:

• Cluster m is a set of nodes.
• Grid G is a set of clusters.
• Node s is an entity where tasks run. There could be one or multiple CPUs and I/O devices.
• Task i is an entity that is executed in a node.
• ீܰ is the number of clusters in grid G.
• ܰ௠ is the number of nodes in cluster m.

B. Local load balancing scheme

Expected processing time ܲ ௦ܶሺ݅ሻ for a given task i in node s is computed as follows:

Cluster
Manager 1

node
node

node

Gateway 1

Cluster
Manager 2

Cluster
Manager 3 Gateway 2

Gateway 3

Grid
Manager

Grid
Gateway

node

node

node

node node

node

Hojiev Sardor Qurbonboyevich et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 04 Apr 2013 213

 ܲ ௦ܶሺ݅ሻ ൌ ௅೔௉ೞ ൅ ௦ሺ݅ሻ, (2)ݐ

where ܮሺ݅ሻ is length of task i in node s, ௦ܲ is a processing power of node s (in MIPS), and ݐ௦ሺ݅ሻ is executed time
of task i in node s at the moment. ܶܲܧሺݏሻ is an expected processing time of node s. Thus ܶܲܧሺݏሻ is equal to the
sum of processing times of tasks in node s as follows:

ሻݏሺܶܲܧ ൌ ∑ ܲ ௦ܶሺ݅ሻ௜א௦ . (3)

Periodically, each node sends its EPT to its cluster manager.

When a cluster manager receives EPT from all nodes in its cluster m, it calculates following values: - ܲܧ ௠ܶ, average of the ܶܲܧ values from nodes in cluster m:

ܲܧ ௠ܶ ൌ ଵே೘ ∑ ௠אሻ௦ݏሺܶܲܧ . (4)

 : ௠, standard deviation of the EPTs from nodes in cluster m. - upper and lower thresholds for cluster mߪ -

 ௛ܶሺ݉ሻ ൌ ܲܧ ௠ܶ ൅ ௠ߪ · (5) ,ߝ

 ௟ܶሺ݉ሻ ൌ ܲܧ ௠ܶ െ ௠ߪ · (6) ,ߝ

where ߝ is a parameter that determines distance of two thresholds.
A cluster manager decides load state of each node by comparing EPT of the node with the thresholds. A

state for a node can be under loaded, normally loaded, or overloaded. If EPT of a node is less than lower
threshold, the node is under loaded. If EPT of a node locates between two level thresholds, it means that the
node is normally loaded. Otherwise it is overloaded.

Next, the cluster manager computes supply of each under-loaded node and demand of each overloaded node
in the cluster. supplym(s) is a difference between EPT(s) of an under-loaded node s and the lower threshold Tl(m).
demandm(r) is a difference between EPT(r) of an overloaded node r and the higher threshold Th(m). Thus, for
under-loaded node s and overloaded node r in cluster m, supply and demand are computed as follows:

ሻݏ௠ሺݕ݈݌݌ݑݏ ൌ ௟ܶሺ݉ሻ െ ܲܧ ௠ܶሺݏሻ, (7)

 ݀݁݉ܽ݊݀௠ሺݎሻ ൌ ܲܧ ௠ܶሺݎሻ െ ௛ܶሺ݉ሻ. (8)

From Equations (7) and (8) supply and demand for cluster m are computed as follows:

Node s
Overloaded

Cluster
Manager

Node r
Under-loaded

ܲܧ ௦ܶ
Transfer order

Send tasks

ܲܧ ௥ܶ

Grid
Manager

ܶܲܧ ௠

Cluster m

Figure 2. Local load balancing

Hojiev Sardor Qurbonboyevich et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 04 Apr 2013 214

௠ݕ݈݌݌ݑݏ ൌ ∑ ௨௡ௗ௘௥ሺ௠ሻאሻ௦ݏ௠ሺݕ݈݌݌ݑݏ , (9)

 ݀݁݉ܽ݊݀௠ ൌ ∑ ݀݁݉ܽ݊݀௠ሺݎሻ௥א௢௩௘௥ሺ௠ሻ , (10)

where under(m) is the set of under-loaded nodes, and over(m) is the set of overloaded nodes in cluster m. The
cluster manager sorts overloaded nodes by descending order of their EPTs and under-loaded nodes by ascending
order of their EPTs. Since the proposed scheme uses pairwise immigration, the number of immigration pairs is
the smaller number between the number of overloaded nodes and the number of under-loaded nodes. For
example, if there are c overloaded nodes and d under-loaded nodes in the cluster, then min(|under(m)|, |over(m)|)
pairs are constructed for immigration. Pairing is done in the sorted order of EPTs. The most overloaded node is
paired with the most under-loaded node. Given an immigration pair (s, r), the immigration size is
min(supplym(s), demandm(r)). The cluster manager sends an immigration order with (immigration size, id of
under-loaded node s) to the overloaded node r. After sending all orders to nodes in a cluster, the cluster manager
m sends its EPTm to the grid manager. If an overloaded node receives an immigration order (size, s) from its
cluster manager, the node transfers tasks in its queue to the under-loaded node s. The amount of emigrated tasks
should not exceed size.

Let us show an example of local load balancing of the proposed scheme. Assume we have five nodes node 1,
node 2, node 3, node 4, and node 5 with EPT 60, 65, 43, 48, and 40, respectively in cluster m as shown in Figure
3. When cluster manager m receives these EPTs, it calculates average EPTm 51.2 and standard deviation σm
10.85 for the cluster. From Equations (5) and (6), if ε = 0.5, upper and lower thresholds are 56.6 and 45.7,
respectively. Node 1 and node 2 are overloaded because their EPTs are greater than upper threshold 56.6. Node
4 is normally loaded. Node 5 and node 3 are under-loaded as shown in Table I. The cluster manager m estimates
“Supply” and “Demand” for cluster m. From Equation (7), supplies of node 3 and node 5 are 2.7 and 5.7,
respectively. Demands for overloaded node 1 and node 2 are 3.4, and 8.4, respectively. Supply of node 5 is 5.7
and it is less than 8.4 demand of node 2, so node 2 emigrates tasks of amount 5.7 to node 5. Demand of node 1
(3.4) is greater than supply of node 3 (2.7), hence node 1sends tasks to node 3 while EPT of tasks sent lower
than 2.7 supply of node 3.

TABLE I. MAKING A DECISION IN LOCAL LEVEL LOAD BALANCING

C. Grid load balancing

After the local load balancing, a cluster manager m sends cluster workload EPTm to the grid manager. The grid
manager computes EPTG average of EPTs from cluster managers as follow:

Node EPT state supply demand target
node

Immigration
size

1 60 Overloaded 3.4 3 2.7
2 65 Overloaded 8.4 5 5.7
3 43 Under-loaded 2.7
4 48 Normally loaded
5 40 Under-loaded 5.7

Cluster
Manager

Node1
(60)

Node2
(65)

Node3
(43)

Node4
(48)

Node5
(40)

Cluster m
Cluster
Manager

Node1
(57.3)

Node2
(59.3)

Node3
(45.7)

Node4
(48)

Node5
(45.7)

Cluster m

2.7 5.7

(a) (b)

Figure 3. Load migration in local load balancing, (a) before immigration, (b) after immigration.

Hojiev Sardor Qurbonboyevich et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 04 Apr 2013 215

ீܶܲܧ ൌ ଵேಸ ∑ ܲܧ ௠ܶ௠ீא , (11)

where ீܰ is the number of the clusters in grid. The grid manager also computes standard deviation ீߪ of EPTs
and thresholds for grid level as follows:

 ௛ܶሺܩሻ ൌ ீܶܲܧ ൅ ீߪ · (12) ,ߝ

 ௟ܶሺܩሻ ൌ ீܶܲܧ െ ீߪ · (13) .ߝ

Then it partitions the set of clusters to normally loaded, under-loaded and overloaded clusters. It computes
supplies of under-loaded clusters and demands of overloaded clusters. It also pairs clusters according to their
EPTs as cluster managers do. If there is a cluster pair (Cs, m), the grid manager sends an order including
(immigration size, Cs) to overloaded cluster m. When cluster manager m receives the order (size, Cs), it
computes immigration amount Pm(s) for overloaded or normally loaded node s in cluster m as follows:

 ௠ܲሺݏሻ ൌ ݁ݖ݅ݏ · ா௉்ሺ௦ሻ∑ ா௉்ሺ௦ሻೞא೚ೡ೐ೝሺ೘ሻ if over(m) ≠Φ , (14)

 ௠ܲሺݏሻ ൌ ݁ݖ݅ݏ · ா௉்ሺ௦ሻ∑ ா௉்ሺ௦ሻೞא೙೚ೝ೘ೌ೗ሺ೘ሻ if over(m) =Φ , (15)

where normal(m) is the set of normally loaded nodes in cluster m. Cluster manager m forwards an immigration
order with Pm(s) to each overloaded node s in m. Overloaded node s transfers tasks of the amount Pm(s) to
cluster manager Cs. A cluster manager merges the immigrated tasks and computes temporary share amount
Qn(r)’ for each task r in cluster n as follows:

 ܳ௡ሺݎሻ′ ൌ ݁ݖ݅ݏ ڄ ா௉்ሺ௥ሻ∑ ா௉்ሺ௥ሻೝאೠ೙೏೐ೝሺ೙ሻ if under(n) ≠ Φ, (16)

 ܳ௡ሺݎሻ′ ൌ ݁ݖ݅ݏ ڄ ா௉்ሺ௥ሻ∑ ா௉்ሺ௥ሻೝא೙೚ೝ೘ೌ೗ሺ೙ሻ if under(n)= Φ. (17)

Next, the share mount values are reverted in the order of EPT(r). If EPTs of under-loaded nodes EPT(r1),
EPT(r2),…, EPT(rR) are in ascending order, Qn(r1)’, Qn(r2)’ … Qn(rR)’ are also in ascending order. Qn(ri)’ is
allocated to node rR-i+1. Thus share amount Qn(r) = Qn(rR-i+1)’. The cluster manager divides the immigrated tasks
to the amount Qn(r) for each under-loaded or normally loaded task r and sends amount Qn(r) of tasks to node r.

Fig. 4 shows two cases of grid level load balancing. Red node is overloaded, blue node is normally loaded,
and orange node is under-loaded. In Fig. 4 (a), cluster manager m orders overloaded node to immigrate tasks to
cluster n, and the tasks are divided and forwarded into two under-loaded nodes. Fig. 4 (b) shows a case that an
overloaded cluster has only normally loaded nodes. In the case, the amount of tasks are computed based on (15)
and are distributed to the normally loaded nodes. The immigrated tasks are gathered at cluster manager n and are
distributed to two under-loaded nodes as shown in Fig. 4 (b).

(a) Overloaded cluster has overloaded node

Cluster
Manager m
Overloaded

node

node

node

Cluster
Manager n
Under-loaded

node
node

node

Grid
Manager

Order

EPT

EPT

Hojiev Sardor Qurbonboyevich et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 04 Apr 2013 216

(b) All nodes of overloaded cluster are normally loaded

Figure 4. Grid level load balancing

Let us show an example of grid level load balancing using the proposed scheme. Assume a grid system has
three clusters: node 1, node 2, node 3, node 4, and node 5 are belong to cluster 1 with loads 30, 35, 32, 40, and
45, respectively; node 6, node 7, and node 8 are belong to cluster 2 with load 50, 60, and 70, respectively; node
9, node 10, node 11, node 12, and node 13 belong to cluster 3 with load 70, 83, 92, 95, and 85, respectively.
Average EPT for each cluster is shown in Table II. Higher and lower thresholds for grid level are 72.6 and 48.3,
respectively. Thus cluster 1 is under-loaded and cluster 3 is overloaded. Demand of overloaded cluster 3 is 12.4.
Supply of under-loaded cluster 1 is 11.9. Since the supply value is less than the demand value, grid manager
orders cluster 3 to immigrate 11.9 amount tasks to cluster 1 as shown in Fig. 5.

TABLE II. AN EXAMPLE OF CLUSTER STATE

Cluster EPT state Supply Demand
Target
cluster

Immigration
size

1 36.4 Under-loaded 11.9 3
2 60 Normally loaded
3 85 Overloaded 12.4 1 11.9

When receiving the order from the grid manager, cluster 3 rechecks load states of all nodes. In our example
cluster 3 has two overloaded nodes, node 11 and node 12. Cluster manager 3 divides 11.9 amount tasks using
Equation (14), and it orders node 11 to immigrate load of 5.85 and node 12 to immigrate load of 6.05 to cluster
1.

After receiving immigration tasks from overloaded cluster 3, under-loaded cluster manager 1 distributes the
tasks to two under-loaded nodes, node 1 and node 3. The amount of share computed from Equation (16) is 5.75
for node 1 and 6.15 for node 3, and distributes these share loads in reverse order. As a result, node 1 gets load of
6.15 and node 3 gets load of 5.75.

V. SIMULATION RESULTS AND ANALYSIS
In order to present the performance of the proposed scheme, we constructed a simulation on GridSim 5.0 which
is Java based simulation tool [12]. All experiments have been performed on 2.2 GHz P4 Intel Pentium with 2
GB main memory, running on Windows 7. In order to obtain reliable results, the same experiments have been
run 10 times. Simulated grid model includes 4 clusters and 16 nodes. Each cluster has 4 nodes.

Average arrival rate of tasks is 4 (per second) for each node. The characteristics of nodes, jobs, and network
link are shown in Table III. The experiment focuses on jobs which are computationally intensive tasks as it is
more common in today’s real life applications [13]. The maximum multi-programming degree of each node is
10, and each node sends EPT every 10 seconds.

Cluster
Manager m
Overloaded

node

node

node

Cluster
Manager n
Under-loaded

node

node

node

Grid
Manager

Order

EPT

EPT

Task immigration

EPT value

Transfer order

node

node

node

Overloaded

Normally loaded

Under-loaded

Hojiev Sardor Qurbonboyevich et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 04 Apr 2013 217

TABLE III. SIMULATION PARAMETERS

Node Characteristics

Number of machines per node

Number of processing element per machine

Processing element rating

Bandwidth

1

1

10 MIPS

8000-40000 bits/sec

Job Characteristics

Length

File Size

Output Size

0-50000 MI

100+ (10% to 40%) Bytes

250+ (10% to 50%) Bytes

Network Link Bandwidth

LAN

WAN

8000-40000 bits/sec

5000-10000 bits/sec

Node 1
(30)Node 2

(35) Node 4
(40)

Node 3
(32)Node 5

(45)

Cluster
manager 1

Node 13
(85)

Node 9
(70)

Node11
(92)

Node12
(95)

Node 10
(83)

Cluster
manager 3

Node 6
(50)

Node 7
(60)

Node 8
(70)

Cluster
manager 2

Grid manager

11.9

6.15

5.75

6.05

5.85

(a)

Hojiev Sardor Qurbonboyevich et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 04 Apr 2013 218

Figure 5. Load migration in grid load balancing, (a) before migration, (b) after migration.

We implemented no load balancing scheme and HDLA [1], and the proposed scheme in order to compare
performance. First, response times of three schemes are compared on uniformly distributed random workloads.
According to the Fig. 6 our algorithm has the best performance on response time.

Figure 6. Average response time

Second, we created a hot spot node in a cluster where the arrival rate of the node is greater than that of other
nodes. Fig. 7 illustrates comparison result when arrival rate of the hot spot node is 5 times higher than that of
other nodes. The hot spot is node 1 in the simulation. According to results as shown in Fig. 7, proposed scheme
makes system load always balanced fairly among nodes.

0

0.5

1

1.5

2

2.5

3

0 1.6 3.2 4.8 6.4 8 9.6 11.2 12.8 14.4 16

M
ill

io
ns

 (s
ec

)

total number of tasks

Thousands

Response time

no load balancing

HDLA algorithm

our scheme

Node 1
(36.15)Node 2

(35) Node 4
(40)

Node 3
(37.75)Node 5

(45)

Cluster
manager 1

Node 13
(85)

Node 9
(70)

Node11
(86.15)

Node12
(88.95)

Node 10
(83)

Cluster
manager 3

Node 6
(50)

Node 7
(60)

Node 8
(70)

Cluster
manager 2

Grid manager

(b)

Hojiev Sardor Qurbonboyevich et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 04 Apr 2013 219

Figure 7. Response time in hot spot case. Node 1 has 5 times arrival rate of others.

VI. CONCLUSION
This paper addresses pair-wise dynamic load balancing scheme for computational grid systems with hot spot.
According to results, the proposed load balancing strategy has good responsible time against system imbalance.
In the future works we will improve our load balancing scheme with fault tolerant features to increase the
reliability of our algorithm.

ACKNOWLEDGMENTS
This paper was supported by Research Fund, Kumoh National Institute of Technology.

REFERENCES
[1] B.Yagoubi, H. Nadia, and H. T. Lilia, “Dynamic load balancing in Grid computing,” African Journal of Research in Computer Science

and Applied Mathematics, (ARIMA), vol. 7, pp. 1–19, 2007.
[2] I. Foster, C. Kesselmen, J. M. Nick, and S. Tuecke, “Grid services for distributed system integration,” IEEE Journals &Magazines,

Computer, vol. 35, pp. 37-46, 2002.
[3] I. Foster and C. Kesselman, “The grid2: Blueprint for a new computing infrastructure,” The Elsevier Series in Grid Computing, second

edition, 2004.
[4] I. Foster and T. S. Chervenak, “The data grid: Towards an architecture for the distributed management and analysis of large scientific

datasets,” Journal of Network and Computer Applications, vol. 23, pp. 187-200, 2001.
[5] C. Xu and F. M, “Load balancing in parallel computers: theory and practice” in International Journal of Network and Computer

Applications, 2000.
[6] A. J. H. Fran Berman, Geoffrey Fox, “Grid computing: Making the global infrastructure a reality,” Willey Series in Communications

Networking and Distributed Systems, 2008.
[7] C. K. H. Kameda, J. Li and Y. Zang, Optimal load balancing in distributed computer systems, Springer, 1997.
[8] S. R. Malarvizhi and Rhymend, “Resource scheduling in hybrid grid environment,” IJCSNS International Journal of Computer Science

and Network Security, vol. 4, pp. 1471-1479, 2010.
[9] A. B. Saxena and D. Sharma, “Analysis of threshold based centralized load balancing policy for heterogeneous machines,”

International Journal of Advanced Information Technology (IJAIT), vol. 1, pp. 39-53, October 2011.
[10] B.Yagoubi and M. Meddeber, “Distributed loacd balancing model for grid computing,” ARIMA journal, vol. 2, January 2007.
[11] S. R. Malarvizhi and Rhymend, “Hierarchical status information exchange scheduling and load balancing for computational grid

environment,” International Journal of Computer Science and Network Security, vol. 10, pp. 177-185, February 2010.
[12] R. Buyya and M. Murshed, “Using the GridSim Toolkit for Enabling Grid Computing Education,” Proc. of International Conference

on Communication Networks and Distributed Systems Modeling and Simulation, January 27-31, 2002.
[13] A. Moallem, “Using swarm intelligence for distributed job scheduling on the grid,” Master thesis, University of Saskatchewan, Canada,

2009.

AUTHORS PROFILE

Hojiev Sardor Qurbonboyevich, received the BSc degree in telecommunication from Tashkent University
of Information Technologies, Uzbekistan. Currently, he is MS student in the Department of Computer
Engineering, Kumoh National Institute of Technology, Gumi City, South Korea. His research interests include
dynamic load balancing and resource allocation in Grid and Cloud Computing.

Tae-Young Choe, is working as Associate Professor in the Department of Computer Engineering, Kumoh
National Institute of Techonology, Gumi City, South Korea. Currently, his research interests are load balancing
in Cloud Computing and parallel algorithms using graphic devices.

1.00E+06
1.50E+06
2.00E+06
2.50E+06
3.00E+06
3.50E+06
4.00E+06
4.50E+06
5.00E+06
5.50E+06
6.00E+06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
es

po
ns

e
tim

e
(s

ec
)

Node index

no load balancing

HDLA algorithm

our scheme

Hojiev Sardor Qurbonboyevich et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 5 No. 04 Apr 2013 220

	Two-Level Dynamic Load BalancingAlgorithm Using Load Thresholds andPairwise Immigration
	Abstract
	Keywords
	I. INTRODUCTION
	II. RELATED WORKS
	IV. PROPOSED LOAD BALANCING SCHEME
	V. SIMULATION RESULTS AND ANALYSIS
	VI. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS PROFILE

