
Data Warehouse Schema Evolution and
Adaptation Framework Using Ontology

M.Thenmozhi
Department of Computer Science and Engineering

Pondicherry Engineering College
Puducherry, India

thenmozhi@pec.edu

K.Vivekanandan
Department of Computer Science and Engineering

Pondicherry Engineering College
Puducherry, India

k.vivekanandan@pec.edu

Abstract— Data Warehouse systems aim at integrating data from multiple heterogeneous, distributed,
autonomous data sources. Due to changing business needs the data warehouse systems are never meant to
be static. Changes in the data source structure or business requirements would result in the evolution of
data warehouse schema structure. When data warehouse schema evolves the dependent modules such as
its mappings, queries and views gets affected. The existing works on data warehouse evolution focus only
on schema evolution at the physical level. As ontology seems to be a promising solution in data warehouse
research, the proposed framework handles data warehouse schema evolution at ontological level.
Moreover, it analyses the impact of the dependent modules and proposes methods to automatically adapt
to changes.

Keywords-Datawarehouse schema evolution; Multidimensional schema evolution,;Impact of data warehouse
evolution

I. INTRODUCTION

The main idea of a data warehouse is the integration of large amounts of data gathered from different
heterogeneous sources throughout an enterprise. The data within the data warehouse is arranged in the form of
multidimensional model in order facilitate business analysis. A multidimensional model consists of entities such
as fact, measures, dimensions and levels [5]. A fact is said to be the subject by which a business is analyzed and
measure represents the how the business transactions are measured. The different perspective by which business
is measure is called as dimensions. The granularity of the dimension is defined by the levels. For example, in a
retail business, sales is said to be the fact, the measures are total sales, profit etc., product, customer, branch and
time are the different dimensions. The product dimension can have product category as a level.

The design of a multidimensional model is carried by means of analyzing the business requirements and
utilizing the knowledge from the data sources of the data warehouse. The data warehouse design process
typically consists of conceptual, logical and physical design stages [11]. The data warehouse multidimensional
model or schema may evolve during the design or at later stage of implementation. One of the reasons for
evolution is due to changes in business requirements such as ambiguous or insufficient requirements, changes in
requirements in later stages of data warehouse environments, generation of new requirements due to
technological advances [14]. Another important reason is the evolving data sources which not only changes its
data but as well its structure. These changes need to be incorporated in the data warehouse schema to make it
valid. As the data warehouse is a complex environment, any change in the data warehouse schema structure
affects various dependent modules such as data source to data warehouse mapping and its ETL (extract,
transform and load) operations by which the warehouse is populated, queries and views. The existing works
such as schema evolution or schema versioning mainly concentrated on data warehouse schema evolution at
physical level [15]. The impact that the data warehouse schema changes has brought on the dependent modules
has not been addressed. The main objective of this paper is to provide an data warehouse evolution and
adaptation framework to verify the impact and automatically adjust the dependent modules. As ontology [4]
seems to be a promising solution for data warehouse research, we use ontological supported framework to
automate the evolution process.

II. RELATED WORK

[1] In this paper the authors present a formal model of a multi-version data warehouse and the set of
operators with their formal semantics that support a DW evolution. They also study the impact analysis of the
operators on DW data and user analytical queries. [10] They proposed a approach based on versioning called
MVTDW which is composed of real versions and alternative versions. They defined some constraints to assure

M.Thenmozhi Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 232

integrity between versions and some algorithms to be applied for schema and instance changes on the TDW
versions. Here the user has to define which version should use to answer queries. [16] In this paper they
introduce an approach which enables the user to integrate his knowledge for analysis capabilities of the
warehouse. They also present some elements that are necessary for its implementation i.e. management model
for the data warehouse progression, algorithms, etc. Here the user knowledge is expressed in terms of “if-then”
type rules. which are used to create granularity levels in dimension hierarchies. [12] The evolution framework is
able to handle changes in data sources and also direct changes in a data warehouse schema. In the evolution
framework the data warehouse versions are supported in the development environment as well as in reports in
the user environment. [13] In this paper they handle schema evolution of certain extended hierarchies prevailing
in the data warehouse. They take into account three hierarchies namely multiple alternative, parallel dependent
and parallel independent hierarchies and defined constraints for it that need to be satisfied for enforcing
semantics and schema correctness. They also proposed an algorithm for the evolution operator for parallel
dependent hierarchy.

III. PROPOSED WORK

In this section we propose a framework for managing the data warehouse schema evolution and adaptation
using ontology. When data source and requirement evolves the data warehouse schema need to be updated in
order to provide up-to-date information to the users. Before making structural changes to the existing data
warehouse physical schema our proposed work provides a method for updating the ontological representation of
the schema. Given information about a data source, requirements and data warehouse as well as the changes in
the data source or requirements, this method produces the updated version of the data warehouse schema at the
ontological level. Figure1. represents the components of our framework. By making use of the ontological
representation of our inputs we facilitate the automation (semi- automation) of the evolution task. First the
changes occurred at data source or requirements are extracted from the corresponding ontology representation.
Next the type of change and the entity affected by the change are derived and the change is propagated to the
DW schema. The updated data warehouse ontology is validated by verifying its consistency. Finally the
dependent entities such as mapping, queries and views are adapted automatically and impact of evolution is
analyzed. We illustrate our approach using TPC-H [2] which is a decision support benchmark. The following
sections describe our approach in detail.

Figure 1. Data Warehouse Schema Evolution and Adaptation Framework

M.Thenmozhi Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 233

A. Input Representation

In order to automate the data warehouse schema evolution process we represent our input such as data
source schema, data warehouse schema and data warehouse requirements in ontology format. Applying the
reverse-engineering approach we define the ontological model of existing data sources and data warehouse
system. A semantic mapping method is adapted to facilitate the transformation of data sources and data
warehouse system from a relational model into an OWL [8] based structure. The ontology can be constructed
using protégé tool [9]. The mapping from database meta-data such as E-R model or UML model to ontology
could be done using the mapping rules as given below:

• The database table is mapped to an ontology class.
• If a database table is related to another, then the two tables are mapped to classes with parent-

child relationship.
• If a database table is related to two tables, then the table is divided into two transferred

classes.
• The primary key is mapped to a data type property of the ontology.
• The foreign key is mapped to an object property of the ontology.

The data source ontology (DSO) is represented as DSO = {C, DP, OP}. Where, C is the set of classes, DP is
the set of data property and OP is the set of object properties of the ontology. Figure 2 represents the ontology
for the TPC-H schema.

Figure 2. DSO representation of TPC-H data source

We assume that a formal requirement analysis for the given domain has been carried out earlier and the
requirements based on i* modeling framework [3] is available. In order to capture the changes in requirements
we represent it in a formal way using requirement ontology called as data warehouse requirements ontology
(DWRO). Formally, DWRO = {SG, IG, DG, IR, M, C} where, SG is a set of OWL classes representing the
strategic goals, IG is a set of OWL classes representing the information goals, DG is a set of OWL classes
representing the decision goals, IR is a set of OWL classes representing the information requirements, M is a set
of data type properties representing measures, C is a set of OWL classes representing the contexts. Figure 3
represents the ontology for the TPC-H requirements for data warehouse.

.

M.Thenmozhi Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 234

Figure 3. DWRO representation of TPC-H data warehouse requirements

Data warehouse schema can be formally defined as DWO = {F,FP,M,D,DP,RP} where, F is a set of OWL
classes representing the fact, FP is a set of OWL classes representing the fact properties, M is a set of data type
properties representing the measures of the fact, D is a set of OWL classes representing the dimensions, DP is a
set of data type properties representing the dimension properties, RP is a set of object properties representing the
relationship between facts and dimensions. Figure 4 represents the ontology for the TPC-H data warehouse.

Figure.4. DWO representation of TPC-H data warehouse

B. Defining Evolution Operators

The possible changes that occur over the data warehouse schema are addition, deletion and rename. The set of
evolution operators to represent the type of change and the concept changed are given in Table 1. The data
warehouse elements such as Fact, Dimension, Measures etc., are subject to change hence the DWO need to be
changed accordingly. Performing a change over the DWO may require additional changes to be executed over the
ontology. For example, addition of a new dimension i.e., class to the DWO requires addition of its data property
and object property.

M.Thenmozhi Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 235

TABLE 1. EVOLUTION OPERATORS

Type of Change DW Schema Elements
Equivalent Ontology

Concept Changed
Elementary Changes

Addition

Table
(Fact, Dimension) Class Add Data Property

Add Object Property

Attributes
(Measures, Descriptive) Data Property Add Property Domain

Add Property Range
Relationship

(Primary Key, Foreign Key) Object Property Add Property Domain
Add Property Range

Deletion

Table
(Fact, Dimension) Class Delete Data Property

Delete Object Property

Attributes
(Measures, Descriptive) Data Property Delete Property Domain

Delete Property Range
Relationship

(Primary Key, Foreign Key) Object Property Delete Property Domain
Delete Property Range

Rename

Table
(Fact, Dimension) Class Rename Class

 (If required)

Attributes
(Measures, Descriptive) Data Property Rename Data Property

(If required)

Relationship
(Primary Key, Foreign Key) Object Property Rename Object Property

 (If required)

C. Compute Mapping

The possible changes that occur over the data warehouse schema are addition, deletion and rename. The set of
evolution operators to represent the type of change and the concept changed are given in Table 1. The data
warehouse elements such as Fact, Dimension

In this step, we define the relationship between the data source and data warehouse. As the DW is populated
with data obtained from several data sources through ETL (extract, load and transform) operations an ETL
mapping exists for the DW under operation. Hence a mapping is produced between the attributes of the data
source and data warehouse schema. Based on this mapping the ETL operations are identified. Since our approach
uses ontology representation of the data source and data warehouse schema, we can automatically compute the
mapping.

Based on the input ontologies DSO and DWO, an ontology matching algorithm first performs concept
matching by measuring the similarity between concepts. Next, property matching is carried out by measuring the
similarity between properties. The logical similarity measure is then performed based on the results of previous
concept matching and property matching. The final matching results are produced after passing through the
refinement process. The matching process is given in Algorithm 1. Here we use WordNet [7] matcher to perform
the matching. Steps 1-6 compute the similarity between the classes in DSO and DWO. Steps 7-12 compute the
similarity between the data properties in DSO and DWO. Here ci and cj represents the classes belonging to DSO
and DWO respectively. And dpi and dpj represents the data properties belonging to DSO and DWO respectively.
1 Algorithm ComputeMapping(DSO,DWO)

2 for all ci ∈ DSO do

3 for all cj ∈ DWO do

4 similarity_score=wordnet.getDistance(ci, cj, pos)

5 print(ci, cj, similarity_score)
6 end for

7 end for
8 for all dpi ∈ DSO do

9 for all dpj ∈ DWO do

10 similarity_score=wordnet.getDistance(dpi, dpj, pos)

11 print(dpi, dpj, similarity_score)
12 end for

M.Thenmozhi Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 236

13 end for
D. Change Capture

Our next step is to extract information related to the changes which need to be propagated to the DWO. A
number of changes, ranging from classes to properties, can affect the ontology which is captured using log. To
address this we use Change Annotation Ontology (ChAO) [6] which acts as a log to capture the changes
happening in the ontology. Table 2 represents a sample change set extracted from DSO. The following steps
represents the methods use to extract property changed in ontology:

Algorithm ExtractChange(DSO,DWRO)
for each change in changes

if(change.getAction().equals("Name_Changed"))
 if (change.getApplyTo().getComponentType().equals("Property"))

 if (change.getApplyTo().getInternalStatus().name().equals("CHANGED"))
 print(change.getAuthor());
 print(change.getAction());
 print(change.getTimestamp().getDate());
 print(change.getApplyTo().getComponentType());
 print (change.getContext());
 print (change.getApplyTo().getInternalStatus().name());
 end if

end if
end if

end for
TABLE 2. CHANGE SET

Data Source
Change

Data Source
Ontology Change

Entity Changed

ADDITION

Table Class Promotion

Attribute Data Property Promotion _p_id

Attribute Data Property Promotion _p_name

Attribute Data Property Promotion _p_category

Attribute Data Property Promotion _p_subcategory

Attribute Data Property Promotion _p_cost

Attribute Data Property Promotion _p_begdate

Attribute Data Property Promotion _p_enddate

Attribute Data Property Promotion _p_total

Relationship Object Property hasPromo

RENAME

Attribute Data Property OldName:Customer_c_comment ,
N N C t f db kAttribute Data Property OldName:Part_p_category,
N N P t d lDELETION

Attribute Data Property Customer_c_mktsegment

Attribute Data Property Part_p_container

E. Change Propagation

To apply the changes over the DWO, we use different algorithms depending on the type of change. For
applying addition change to DWO, if the concept type ci is a class and it has 1:n relationship with existing fact
class then new class ci is added as dimension class to DWO. If the concept type ci has n:1 relationship with
existing dimension class then new class ci is added as fact class to DWO. If the concept type ci has 1:n
relationship or 1:1 relationship with existing dimension class then new class ci is added as level to DWO (steps

M.Thenmozhi Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 237

2-11). If the concept type dpi is a data property, the domain class ci of dpi is obtained. The data property is added
to ci (steps 12-14). If the concept type opi is a object property, the domain class ci and range class cj of opi is
obtained. The object property is added to DWO (steps 12-14).

If change to be applied to DWO is deletion change deletion algorithm is used. If the concept type ci is a class
then the class is deleted from DWO. All data properties dpi and object properties opi of ci are deleted. If the
concept dpi is data property to be deleted from DWO then its corresponding domain and range is also deleted. If
the concept opi is object property to be deleted from DWO then its corresponding domain and range is also
deleted (steps 1-13).

For the change rename change rename algorithm is applied. The corresponding concept type i.e class/ data
property / object property is obtained from DWO and it is replaced with new name (steps 1-10). Figure 5
represents the DWO after change set given in Table 2 is propagated. Following are the steps for addition, deletion
and rename algorithms:
1 ChangeAddition(DWOntology,Concept,Concept _Type)
2 if Concept _Type ==Class then
3 if ci has 1:n relationship with existing fact f then
4 Add dimension ci to DWO
5 else if ci has n:1 relationship with existing dimension d then
6 Add fact ci to DWO
7 else if ci has n:1 or 1:1 relationship with existing dimension d then
8 Add level ci to DWO
9 end if
10 end if
11 end if
12 else if Concept _Type ==DataProperty then
13 ci = Domain(dpi)
14 Add dpi to ci in DWO
15 else if Concept _Type ==ObjectProperty then
16 ci = Domain(opi)
17 cj = Range(opi)
18 Add opi to ci and cj in DWO
19 end if
20 end if
21 end if

1 ChangeDeletion (DWOntology,Concept,Concept _Type)
2 if Concept _Type ==Class then
3 Delete ci from DWO
4 Delete dpi and opi from DWO
5 if Concept _Type ==DataProperty then
6 Delete dpi from DWO
7 Delete Domain(dpi) and Range(dpi) from DWO
8 if Concept _Type ==ObjectProperty then
9 Delete opi from DWO
10 Delete Domain(opi) and Range(opi) from DWO
11 end if
12 end if
13 end if

1 ChangeRename(DWOntology, OldConcept,NewConcept, Concept _Type)
2 if Concept _Type ==Class then
3 Rename ci in DWO
4 else if Concept _Type ==DataProperty then

M.Thenmozhi Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 238

5 Rename dpi in DWO
6 else if Concept _Type ==ObjectProperty then
7 Rename opi in DWO
8 end if
9 end if
10 end if

Figure 5. DWO after change propagation

F. Change Validation

In this step the DWO is validated after the required changes are propagated. Using ontology reasoner any
inconsistency in the DWO is validated and resolved with help of data warehouse designer suggestion. Finally the
data warehouse schema is constructed in the underlying database as a evolved schema or as a new version using
DWO.
G. Automatic Adaptation

The important step of our approach is find the dependent entities that are affected and adapt then
automatically after the changes are propagated to DWO. The DWO has a mapping with the DSO, due to recent
changes the mapping becomes invalid. Hence it is required to make mapping adjustments between them. The
queries which worked over the previous DW schema may not work for the new DW schema. Hence it is required
to perform a query rewriting. Finally the views maintained for the DW schema also becomes invalid hence it is
necessary to update the views. For each of the dependent entities discussed, we need to calculate the cost of
updating each.

1) Mapping adjustments

The mapping between DSO and DWO was automatically obtained using wordnet. To update the mappings we
use the CHAO log entries for both ontologies by identifying the changed resources in both ontologies. Mappings
are then established only for the changed resources and the existing mappings are updated. The previous
mappings between these two ontologies are updated at the completion of the Algorithm. In Algorithm first the
changed concepts are obtained from log and read into CH for DSO and DWO (steps 1-6). Next the similarities
between the changed resources are computed if the type of change is addition in DSO and DWO (steps 6-10). If
the change type is deletion the concepts are searched in the mapping file and the corresponding mapping is
removed (steps 11-13). For a renamed concept the mapping entity is obtained and the concepts are renamed using
information from the log (steps 14-16). Finally the mapping file is updated with new mapping information. The

M.Thenmozhi Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 239

total no. of entities affected and corrected is computed. Figure 6 represents the diagrammatical representation of
mapping updation for customer class.
Algorithm UpdateMapping
Input: Ontologies DSO and DWO for mapping reconciliation, Ontology change information (i.e., CH1and CH2)
from ChAO of both ontologies, i.e., CH1 DSO and CH2 DWO
Output: Number of mapping affected and corrected.

1 if CH ∩ CH. DSO.ChAO.NewChange then
2 CH1 = CH.ChAO
3 end if

4 if CH ∩ CH.DWO.ChAO.NewChange then
5 CH2 = CH.ChAO
6 end if
7 if ChAO.NewChange.ChangeType = ADDITION then
8 NewMap ←Similarity(CH1,CH2)
9 Execute.update(MappingsFile, NewMap)
10 Count=Count+1
11 else if ChAO.NewChange.ChangeType = DELETION then
12 Execute.update(MappingsFile, DeleteMap(CH1,CH2))
13 Count=Count+1
14 else if ChAO.NewChange.ChangeType = RENAME then
15 Execute.update(MappingsFile, RenameMap(CH1,CH2))
16 Count=Count+1
17 else
18 Print(“No Change”)
19 end if
20 end if
21 end if

Figure 6. Representation of Mapping Updation

M.Thenmozhi Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 240

2) Query Rewriting

As the DW schema has evolved the queries imposed previously need to be rewritten to work over the new
DW schema. First the type of change performed over DWO is extracted. If change type is addition and if MD
data property is added then, the corresponding MD class in DWO is found. Next the existence of MD class
name in the FROM clause of each query is checked. With user suggestion the queries with the new data
property are rewritten. If change type is addition and if MD class is added then with user suggestion the queries
are rewritten with the new MD class. Finally the total no. of queries rewritten is counted (steps 1-11).

 If change type is deletion and if MD data property is deleted then, its existence in the SELECT,
WHERE, GROUPBY clause of each query is checked. With user suggestion the queries are rewritten with the
deleted data property. If change type is deletion and if MD class is deleted then, the existence of MD class name
in the FROM clause of each query are checked. With user suggestion the queries are rewritten with the deleted
MD class. Finally the total no. of queries affected and rewritten is counted (steps 12-33).

 If change type is rename then and if MD data property is renamed then, existence of MD class name in
the SELECT, WHERE, GROUPBY clause of each query is checked. With user suggestion the queries are
rewritten with the renamed data property. If MD class is renamed then the existence of old MD class name is
checked in the FROM clause of each query. With user suggestion the queries are rewritten with the renamed
MD class. Finally the total no. of queries affected and rewritten is counted (steps 23-11). In order to compute the
no. of queries affected and to rewrite the queries we apply the following steps:
1 Addition(DWOntology,Concept _Type,QueryWorkload)
2 if Concept _Type ==Class then
3 RewriteQuery in FROM clause with ci

4 Count++
5 else if Concept _Type ==DataProperty then
6 d= Domain(dpi)
7 SearchQuery for d
8 RewriteQuery in SELECT, WHERE, GROUPBY clause with dpi
9 Count++
10 end if
11 end if
12 Deletion(DWOntology,Concept _Type,QueryWorkload)
13 if Concept _Type ==Class then
14 RewriteQuery in FROM clause with ci
15 Count++
16 else if Concept _Type ==DataProperty then
17 d= Domain(dpi)
18 SearchQuery for d
19 RewriteQuery in SELECT, WHERE, GROUPBY clause with dpi

20 Count++
21 end if
22 end if
23 Rename(DWOntology,Concept _Type,QueryWorkload)
24 if Concept _Type ==Class then
25 RewriteQuery in FROM clause with ci

26 Count++
27 else if Concept _Type ==DataProperty then
28 d= Domain(dpi)
29 SearchQuery for d
30 RewriteQuery in SELECT, WHERE, GROUPBY clause with dpi

31 Count++
32 end if
33 end if

M.Thenmozhi Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 241

3) View Rewriting

Materialized views are used in data warehouse to pre-compute and store aggregated data such as the sum of
sales. They are used to vastly improve the query performance. When the underlying source and data warehouse
changes its schema structure the materialized views may become out-of-dated. Hence, one important issue is to
maintain the materialized views’ consistency upon any structural changes. In order to find the number views
affected and to rewrite the views we can use the steps given for query rewriting.

IV. IMPACT ANALYSIS

In order to evaluate the efficiency of our approach we examine the cost of manually handling evolution at the
physical level with respect to our ontological approach for handling evolution. The manual effort comprises of
detection, inspection and where necessary the rewriting of affected activities by an event.

Human effort for manual handling of schema evolution for a change c, over an event e, is expressed as:

Where,

 AX = no. of Query/View/Mapping per change c, affected by event e, that is manually detected.

RX = no. of Query/View/Mapping per change c, which must be manually re-written/updated/mapped to
event e.

For a set of evolution operators O, in an activity A, the overall cost of manual adaption to the change c, for an
event e is given as:

Automatic handling of schema evolution using the proposed ontological approach is quantified as a sum of
no. of changes imposed on the DW schema CS and cost of manually discovering and adjusting activities AMC
that escape the automation Ad, The latter cost AMC is expressed as:

The overall cost of automated adoption is given by,

The Table 3 shows the impact of query, ETL mapping and view that is calculated values for manual and
automated adoption with the no. of entities affected or corrected in each event for a change.

RXAX MC e
c

e
c

e

c
 +=

 
∈ ∈

=
Oc Ae

e

cMC CMA

 
∈ ∈

=
Oc Ae

e

c
d

MC AMC

AMCCS CAA +=

M.Thenmozhi Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 242

TABLE 3. CALCULATED VALUES OF CMA AND CAA FOR DIFFERENT CHANGE SETS

Change
Set

Impact
Analysis

No. of entities affected, corrected in each event for a change

AX RX MC CS AMC CMA CAA

CS1

Query 20 13 33 19 220 251 239

ETL
Mapping

74 76 150 24 76 170 100

View 20 13 33 19 224 255 243

CS2

Query 20 13 33 18 188 219 206

ETL
Mapping

75 76 151 23 76 171 99

View 20 13 33 18 192 223 210

CS3

Query 20 13 33 17 194 225 211

ETL
Mapping

74 81 155 27 81 175 108

View 20 13 33 17 202 233 219

CS4

Query 20 13 33 18 203 234 221

ETL
Mapping

64 78 142 25 78 162 103

View 20 13 33 18 211 242 229

CS5

Query 20 13 33 15 206 237 221

ETL
Mapping

76 79 155 26 79 175 105

View 20 13 33 15 218 249 223

AX – no. of Query/View/ETL Mapping per change c, affected by event e, that is manually detected.
RX – no. of Query/View/ETL Mapping per change c, which must be manually re-written/updated/mapped to

event e.
MC – human effort for manual handling of schema evolution for a change c, over an event e.
CS – no. of changes imposed on the DW schema.
AMC – cost for automated handling of schema evolution for a change c, over an event e.
CMA – the overall cost of manual adaption to the change c, for an event e.
CAA – the overall cost of manual adaption to the change c, for an event e.
The following Figure 7 shows the impact of evolution on mapping with a comparison cost of manual

adaptation and automated adaptation using ontological approach for various change sets.

Figure 7. Impact of Evolution on Mapping

M.Thenmozhi Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 243

The Figure 8 shows the impact of evolution on queries with a comparison cost of manual adaptation and
automated adaptation using ontological approach for various change sets.

Figure 8. Impact of Evolution on Queries

The following Figure 9 shows the impact of evolution on mapping with a comparison cost of manual
adaptation and automated adaptation using ontological approach for various change sets. The total adaptation
cost for manual and automated approach is given in Figure 10.

Figure 9 Impact of Evolution on Views

Figure 10 Total Adaptation Cost for Existing and Proposed Approach

M.Thenmozhi Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 244

 From the above figures, it is found that the automated cost (CAA) of adaptation to Mapping, Query and
view is comparatively less than that of manual cost of adoption (CMA) to ETL Mapping, Query and view.

The Figure 11 and Figure 12 shows the comparison of no. of entities affected and that are corrected by using
the proposed approach by taking the evolution operators along the x-axis and of no. of entities along the y-axis.

Figure 11 Total No. of Attributes Affected & Corrected for each Evolution Operators

Figure 12 Total No. of Tables Affected & Corrected for each Evolution Operators

CONCLUSION

A data warehouse needs to provide up-to-date information for enabling critical business decisions. When
the data source or requirements for a data warehouse evolves the schema of the data warehouse needs to evolve.
In this paper we provide a framework for handling changes from data source or requirements to the data
warehouse schema at ontological level. The proposed approach provides an insight of the evolution task and
analyses its impact on the dependent modules. It also facilitates the automatic adaptation of the dependent
modules. The automatic adaptation cost using the proposed ontological approach is lesser than the manual
adaptation cost. By analyzing the impact of dependent modules the data warehouse designer can make a
decision of carrying the changes over the physical schema of data warehouse.

REFERENCES
[1] Bebel, B., Z. Krolikowski, and R. Wrembel. "Formal approach to modelling a multiversion data warehouse." Palac Kultury i

Nauki (2006).
[2] Council, T. P. P. (2008), TPC-H benchmark specification.[Online] www.tpc.org/tpch/ (Accessed 12 November 2013).
[3] Giorgini, Paolo, Stefano Rizzi, and Maddalena Garzetti. "Goal-oriented requirement analysis for data warehouse design."

In Proceedings of the 8th ACM international workshop on Data warehousing and OLAP, pp. 47-56. ACM, 2005.
[4] Gruber, Thomas R. "A translation approach to portable ontology specifications."Knowledge acquisition 5, no. 2 (1993): 199-220.
[5] Kimball, Raiph. The data warehouse toolkit. John Wiley & Sons, 2006.
[6] Liang, Mr, Dr Alani, and Prof Shadbolt. "Ontology change management in protégé." (2005).
[7] Lin, Feiyu, and Kurt Sandkuhl. "A survey of exploiting wordnet in ontology matching." In Artificial Intelligence in Theory and

Practice II, pp. 341-350. Springer US, 2008.
[8] McGuinness, Deborah L., and Frank Van Harmelen. "OWL web ontology language overview." W3C recommendation 10, no. 2004-03

(2004): 10.

M.Thenmozhi Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 245

[9] Noy, Natalya F., Monica Crubézy, Ray W. Fergerson, Holger Knublauch, Samson W. Tu, Jennifer Vendetti, and Mark A. Musen.
"Protege-2000: an open-source ontology-development and knowledge-acquisition environment." In AMIA Annu Symp Proc, vol. 953,
p. 953. 2003.

[10] Oueslati, Wided, and Jalel Akaichi. "A Multiversion Trajectory Data Warehouse to Handle Structure Changes." International Journal
of Database Theory & Application 4, no. 2 (2011).

[11] Phipps, Cassandra, and Karen C. Davis. "Automating data warehouse conceptual schema design and evaluation." In DMDW, vol. 2,
pp. 2-2. 2002.

[12] Solodovnikova, Darja. "Data Warehouse Evolution Framework." In SYRCoDIS. 2007.
[13] Talwar, Kanika, and Anjana Gosain. "Implementing Schema Evolution in Data Warehouse through Complex Hierarchy

Semantics." International Journal of Scientific & Engineering Research 3, no. 7 (2012).
[14] Thakur, Garima, and Anjana Gosain. "DWEVOLVE: a requirement based framework for data warehouse evolution," ACM SIGSOFT

Software Engineering Notes 36.6, pp.1-8, 2011.
[15] Wided, and Jalel Akaichi. "A SURVEY ON DATA WAREHOUSE EVOLUTION." International Journal of Database Management

Systems 2, no. 4 (2010).
[16] Zekri, M., and A. Abdellatif. "A new approach to update the dimension hierarchies for data warehouse design." In Networked

Computing and Advanced Information Management (NCM), 2011 7th International Conference on, pp. 62-66. IEEE, 2011.

AUTHORS PROFILE

M.Thenmozhi is a Research Scholar in the Department of Computer Science and Engineering, Pondicherry
Engineering College, Pondicherry. She is currently working as Assistant Professor in the Department of
Computer Science and Engineering, Pondicherry Engineering College, Pondicherry, India. She completed her
B.Tech in Computer Science and Engineering from Pondicherry University and M.E in Computer Science and
Engineering from Anna University. Her research interest includes Data Warehousing, Data Modeling, Data
mining and Ontology.
Dr.K.Vivekanandan is currently a Professor at the Department of Computer Science and Engineering,
Pondicherry Engineering College, Pondicherry. He completed his B.E from Bharathiyar University,
M.Tech from Indian Institute of Technology, Bombay and Ph.D from Pondicherry University. He has over 150
papers in national and international journals and conferences. He has coordinated two AICTE sponsored RPS
projects on “Developing Product Line Architecture and Components for e-Governance Applications of Indian
Context” and “Development of a framework for designing WDM Optical Network. His special research
interests include Software Engineering, Object Oriented Systems, Information Security, Web Services and Data
Warehousing.

M.Thenmozhi Kabir et.al / International Journal on Computer Science and Engineering (IJCSE)

ISSN : 0975-3397 Vol. 6 No.07 Jul 2014 246

	Data Warehouse Schema Evolution andAdaptation Framework Using Ontology
	Abstract
	Keywords
	I. INTRODUCTION
	II. RELATED WORK
	III. PROPOSED WORK
	IV. IMPACT ANALYSIS
	CONCLUSION
	REFERENCES
	AUTHORS PROFILE

