Abstract |
: |
For frequent movement of a mobile device, there is a need for a secure registration procedure of the mobile device by announcing its current location to the home network, especially, if it is not in the home domain. While devising the registration procedure for mobile IPv6 (MIPv6) based network, it is essential to consider the security issues for cryptographic approaches and an infrastructure requirement on the network. If a public key based cryptography is used for improving the security, then the key exchange mechanisms of the communicants must be handled appropriately. The infrastructure based approach increases the complexity of the mobile device and the mobility agents and also requires an additional message exchanges. Hence, this paper deals with an infrastructure-less registration scheme with symmetric key approach that acts upon MIPv6 environment consisting of the mobile node, home agent, and correspondent node. The proposed scheme is simulated and evaluated for security using Murphi checker. The correctness of the signaling/message sequences of the proposed scheme are verified by the finite state machine. Finally, the simulation results reveals that better security and mutual authentication between MIPv6 nodes have been achieved, and further, mitigation for the various attack scenarios have also been addressed. |