e-ISSN : 0975-4024 p-ISSN : 2319-8613   
CODEN : IJETIY    

International Journal of Engineering and Technology

Home
IJET Topics
Call for Papers 2021
Author Guidelines
Special Issue
Current Issue
Articles in Press
Archives
Editorial Board
Reviewer List
Publication Ethics and Malpractice statement
Authors Publication Ethics
Policy of screening for plagiarism
Open Access Statement
Terms and Conditions
Contact Us

ABSTRACT

ISSN: 0975-4024

Title : Algorithm for Modeling Wire Cut Electrical Discharge Machine Parameters using Artificial Neural Network
Authors : G.Sankara Narayanan, D.Vasudevan
Keywords : WEDM, Artificial Neural Network, SKD11, Levenberg-Marquardt algorithm
Issue Date : Feb - Mar 2014
Abstract :
Unconventional machining process finds lot of application in aerospace and precision industries. It is preferred over other conventional methods because of the advent of composite and high strength to weight ratio materials, complex parts and also because of its high accuracy and precision. Usually in unconventional machine tools, trial and error method is used to fix the values of process parameters which increase the production time and material wastage. A mathematical model functionally relating process parameters and operating parameters of a wire cut electric discharge machine (WEDM) is developed incorporating Artificial neural network (ANN) and the work piece material is SKD11 tool steel. This is accomplished by training a feed forward neural network with back propagation learning Levenberg-Marquardt algorithm. The required data used for training and testing the ANN are obtained by conducting trial runs in wire cut electric discharge machine in a small scale industry from South India. The programs for training and testing the neural network are developed, using matlab 7.0.1 package. In this work, we have considered the parameters such as thickness, time and wear as the input values and from that the values of the process parameters are related and a algorithm is arrived. Hence, the proposed algorithm reduces the time taken by trial runs to set the input process parameters of WEDM and thus reduces the production time along with reduction in material wastage. Thus the cost of machining processes is reduced and thereby increases the overall productivity.
Page(s) : 164-170
ISSN : 0975-4024
Source : Vol. 6, No.1