Abstract |
: |
Mitigation of global warming gases from burning gasoline for transportation in vehicles is one of the biggest and most complex issues the world has ever faced. In an intention to eradicate the environmental crisis caused due to global warming, electric vehicles were been introduced that are powered by electric motor which works on the energy stored in a battery pack. Inspired by the research on power management in electric vehicles, this paper focuses on the development of an energy management system for electric vehicles (EMSEV) to optimally balance the energy from battery pack. The proposed methodology uses firefly optimization algorithm to optimize the power consumption of the devices like electric motor, power steering, air conditioner, power window, automatic door locks, radio, speaker, horn, wiper, GPS, internal and external lights etc., from the battery in electric vehicles. Depending upon the distance to cover and the battery availability, the devices are made to switch down automatically through dynamic EDF scheduling. CAN protocol is used for effective communication between the devices and the controller. Simulation results are obtained using MATLAB. |