Abstract |
: |
In general, the steel synthetic fibers improve the durability of concrete by providing crackarresting mechanism and minimizing it’s possible to cracking. In this study, an experimental program was undertaken to investigate the effect of steel synthetic fibers content volume fractions on the compressive, tensile, modulus of elasticity, and flexural toughness of lightweight aggregate concrete (LAWC). The tested specimens were divided into five groups based on steel synthetic fibers content volume fractions (0, 0.3, 0.6, 0.9 and 1.2%). The experimental results show that steel synthetic fibers content volume fractions considerably enhanced the mechanical properties of concrete in terms of compressive strength (2.8 for 0.3% fiber to 11.3% for 1.2% fiber), splitting tensile strength (3.9 for 0.3% fiber to 35.9% for 1.2% fiber), and flexural strength (21.8 for 0.3% fiber to 56.8% for 1.2% fiber). Also, the tested results show that the flexural toughness indexes and post-cracking toughness especially on the first crack and failure deflections were extensively enhanced by the addition of fibers. The improvement in post-cracking toughness could be due to the crack arresting effect of steel synthetic fibers because it continued to exhibit residual strength after the first crack creation and needed higher energy for the fiber pull out. |