
Dr.A.Arul Lawrence selvakumar /International Journal of Engineering and Technology Vol.1(2), 2009, 50-62

50

Analysis & Design of Network in Reusable
Sub-Systems

Dr.A.Arul Lawrence selvakumar,
Professor & Head

Madanapalle Institute of Technology & Science
Aarul72@hotmail.com, dr.arullawrence.cse@gmail.com

Abstract: Models of computation (MOC) provide a
framework to model various algorithms and activities,
while accounting for and exploiting concurrency and
synchronization aspects.. Further, a combination of
these MOCs may be needed to truly represent a given
Network-onChip (NOC) region and may further differ
from a global to a local region. We have analyzed
various models of computation (MOC) suitable for
NoC. We have modeled a concurrent architecture for a
customizable and scalable NOC in a system-level
modeling environment using MLDesigner. MLDesigner
provides a system level modeling platform, which allows
one to integrate such MOCs together. We provide
simulation results for various scheduling criteria,
injection rates, buffer sizes, and network traffic. We
abstracted area results for a 4×4 mesh based NoC from
its Field Programmable Gate Arrays (FPGA)
implementation. We have further quantified all the
results and presented them from a system architect’s
view.

I. INTRODUCTION
A system design process is inherently complex.

The design involves multiple representations, multiple
(design) groups working on different design phases,
and a complex hierarchy of data and applications [1].
The different groups bring different perspectives
towards system design. The system or product
inconsistencies primarily arise out of lack of
appropriate communication among various design
teams. For example, concerns of a hardware (HW)
design engineer are different from that of a software
(SW) designer and they are often unable to understand
and help address the problems of the other [2]. Such
constraints lead to increase in product development
cycle and product development cost, thereby reducing
system design productivity [3]. To enhance this
declining productivity, one will have to exploit the
principle of “design-and-reuse” to its full potential [4].
Then, a system (subsystem) would be composed of
reusable sub-systems (components).

Network-on-Chip (NoC) architecture can improve
this declining design productivity by serving as a
reusable communication sub-system for an embedded
device [5]. NoC provides an multi-core architecture

for managing complexity by incorporating
concurrency and synchronization. This NoC
architecture may comprise of components such as,
routers, input and output buffers, network interface,
switch, virtual channel allocator, scheduler and a
switch allocator [6]. To develop a system from such
reusable components, one will have to design and
develop variants of each component. For example,
buffer size is a customizable parameter for an input
buffer. Similarly, scheduling criteria provides
customizability for scheduler component. A system
architect estimates performance and Quality-of-
service (QoS) parameters for various system
configurations. Components need to encapsulate their
performance metrics for various useful parameter
combinations, in order to help the architect to make
informed decisions. We propose that a system be
modeled in advance of the architect’s design phase.
Such a model is analyzed to ensure system
functionality at an abstract manner. This model can
then be ported to architect’s design phase, for
analyzing the performance of a system and for
estimating the resources needed for mapping an
application on to the system. This model must allow
one to manipulate a set of parameters to fine tune
system performance. Such a system model needs to
have high level representation of various performance
and QoS parameters for subsystems and components.
These performance and QoS parameters can then be
traded-off against each other in the system model, to
yield a global optimization. Such a model at the
design phase will allow one to make key decisions
and reduce the scope of the multidimensional search
space. These key decisions may include the number of
processors, HW-SW partitioning, estimated
performance values for new components, and the use
of existing components in SW or HW. Such design
decisions have the potential to significantly enhance
productivity of system design.

Such system modeling, analysis and design will
not be an effective solution until we have a
mechanism for modeling of concurrency and
synchronization issues [7]. This requires
representation of various activities and algorithms

Dr.A.Arul Lawrence selvakumar /International Journal of Engineering and Technology Vol.1(2), 2009, 50-62

51

with appropriate MOC (Models of Computation) [8].
This defines our two goals for the system level
designers: (1) To model the system functionality well
in advance of building the actual computing system in
order to provide a level of flexibility in system design.
(2) To be able to manipulate an abstract set of design
elements simultaneously to generate different sets of
QoS (Quality of Service) parameters and performance
metrics and fine tune the system model.

A MOC is a mathematical formalism that captures
and allows us to reason about a computational system
or concept independent of its implementation details.
Different MOCs have evolved to represent the
reasoning in different areas of focus [9]. A
synchronous local region of an NoC might require one
or more such MOCs to co-exist and interact. Further,
to reduce simulation time and to integrate the
subsystems into an integrated system model, other
MOCs may be needed. Thus, several MOCs are
needed for modeling an integrated system [10]. In
such a system each component or the subsystem of the
system should be able to use any allowed MOC and
more importantly should retain its behavior after
integration of the system. Consider also the case in
which a subsystem uses two or more local regions (or
islands) of the NoC. These are connected by a switch
in an NoC. For example consider a digital camera as a
component, or as a subsystem of a much larger
system, such as a wireless handheld device (system).
It is possible that its design would not fit into one
local region. Under such a scenario we should also be
able to address the concurrency and synchronization
issues because of shared resources (both local and
global). We have integrated appropriate models of
computation to model our NoC architecture.

In this paper we discuss various MOCs that can be
used for modeling NoC architecture. We present a
system-level model of the our NoC, called ONoC,
after our Motorola funded project entitled “One Pass

to Production,” where our goal is to develop a
seamless integrated methodology for developing a
mobile embedded system . ONoC is a quality-of-
service driven, customizable, and parametriziable
NoC implementation. We have combined different
MOCs together to represent NoC model. ONoC
model has been tested for different injection rates and
distribution patterns. We provide latency results for
different buffer sizes, scheduling algorithms, and NoC
area. We abstracted area results from its FPGA
implementation.

1.1 NOC Architecture Description

A NoC is designed as a layered architecture and
mainly comprises of two layers: communication
protocol and communication backbone.
Communication Protocol layer consists of the
Network Interface (NI) and is responsible for
decoupling communication from computation and
packetization/depacketization. The Communication
Backbone layer, on the other hand, is instantiated with
three components: routers, buffers and links. Figure 1
shows a 3×3 mesh based NOC architecture. In Figure
1, Bi, Bo, P, C, N, S and NI represent input buffer,
output buffer, producer, consumer, node, scheduler
and network interface respectively. Links provide
connection to various buffers, node/scheduler, and
buffer. The routers are connected to each other and to
NI, as per a specific topology. The router block
includes the Node (N) and the Scheduler (S). S is
responsible for controlling the traffic flow while the
actual data is router via a N. The Communication
Backbone layer supports routing, switching priority
based communication, and flow control logic. A
resource such as processor, memory, field
programmable gate array (FPGA), application specific
integrated circuit (ASIC), or any other hardware
element, must be connected to routers or switches
through an NI.

Dr.A.Arul Lawrence selvakumar /International Journal of Engineering and Technology Vol.1(2), 2009, 50-62

52

P/C

N S N S N S

Bi Bo

N S

Bi Bo

N S

Bi Bo

N S

Bi Bo

N S

Bi Bo

N S

Bi Bo

N S

Bi
Bo

Bi
Bo

Bi
Bo

Bi
Bo

Bi
Bo

Bi
Bo

Bi
Bo

Bi
Bo

Bi
Bo

P/C

P/C P/C

P/C

P/C

P/C P/C P/C

P/C

N S N S N S

Bi Bo

N S

Bi Bo

N S

Bi Bo

N S

Bi Bo

N S

Bi Bo

N S

Bi Bo

N S

Bi
Bo

Bi
Bo

Bi
Bo

Bi
Bo

Bi
Bo

Bi
Bo

Bi
Bo

Bi
Bo

Bi
Bo

P/C

P/C P/C

P/C

P/C

P/C P/C P/C

NI NI

NI NI

NI

NI

NI

NI

NI

Figure 1. NOC architecture

II. BACKGROUND
Advances in semiconductor technologies have led

to continual and rapid transistor scaling; this will soon
facilitate the integration of a billion transistors on a
small size integrated circuit [11]. Traditional SoC
systems may integrate one or two general processors,
with a few slaves as application specific processors
(ASPs). Such a system is divided into several
independent functional blocks, which are then
designed, most likely as dedicated hardware engines
(ASPs) or as tasks on one or two processors. These
functional blocks synchronize their activities by
means of local operating system(s) on the processor(s)
and an on-chip communication bus such as AMBA
[12]. With increasing user demands for
computationally extensive applications on an
embedded system, such as multimedia, real-time
video communication, and 3-D video gaming, this
model is no longer viable. Moore’s law predicts that a
chip in 2010 will have more than four billion
transistors operating in the multi-GHz range [13].
This is mainly due to the near exponential decrease in
the transistor size enabling faster transistor switching
times and more densely packed integrated circuits.
Such computation power has posed some challenges
which include the disparity in transistor and wire
speeds, and increased power dissipation, leading to a
decrease in the area of the chip which can be utilized
with a single clock cycle [14]. Under such
considerations, a single processor implementation will
not suffice [12]. This has resulted in exploitation of
multi-core architectures, thus driving the development
of increasingly complex multi-processor systems-on-
chip (MPSoCs) [12]. The consequences of this trend
imply a shift in concern from computation and

sequential algorithms to addressing concurrency,
synchronization and communication issues in every
aspect of hardware and software co-design and
development. As the technology scaling works better
for transistors than for interconnecting wires [15],
there is an increasing disparity between the wires and
the transistors in terms of power consumption and
latency. It is estimated that in the 50 nm technology,
global wire delays and leakage current will become a
dominant factor. On a billion transistor chip, it would
not be possible to send a global signal across the chip
in real-time [10, 11, 12, 13, 15]. As a result, achieving
synchronization onto the system will be very difficult,
if not impossible. A bus based SoC or MPSoC does
not offer the required amount of reuse in order to meet
the time-to-market requirements. This will continue to
impact the productivity of system architects and
designers. NoCs can improve design productivity by
supporting modularity and reuse of complex cores,
thus enabling a higher level of abstraction in the
architectural modeling of future systems [16].

Researchers have suggested various network
topologies including a star-based NoC [17], a tree
based implementation of NoC [18], mesh, torus and
ring topologies [19]. New algorithms have been
proposed to reduce power consumption while
securing cost optimization [20]. Efficient router
architectures have evolved for the NoC [12]. NI is
responsible for packetization and depacketization of
data traffic, in addition to conventional interfacing.
This functionality may be implemented either with
hardware or with software. Bhojwani and Mahapatra
[21] compared software and hardware
implementations of NI. They showed that the software
implementation of NI takes about 47 cycles to

Dr.A.Arul Lawrence selvakumar /International Journal of Engineering and Technology Vol.1(2), 2009, 50-62

53

complete packetization/depacketization, while the
hardware version takes only 2 cycles. Substantial
research has been conducted to propose the right data
formats needed for various layers in the protocol
stack. Ethereal [23] and XPIPES [5], [23] NOCs use
OCP protocol, while SPIN [24] and Proteo [25] NOCs
have integrated Virtual Component Interface (VCI)
protocol in their implementations. Various routing
algorithms have been proposed for the NoC
environment. Most of the researchers suggested static
routing algorithms and have performed
communication analysis for NoC based on static
behavior of the processes, thus obtaining a static
routing for NoC. Siebenborn et. al. used a
communication dependency graph (CDG) to analyze
inter-process communication [26]. Hu et. al. provided
graph-based application decomposition and mapping
strategies for NoC [27]. Madsen et. al. provided a
real-time operating system (RTOS) architecture for
NoC [28]. They provided RTOS-based application
scheduling techniques for use on a NoC. Based on
routing strategies, various router implementations
have also been proposed. Wolkotte et. al. proposed a
circuit switched router architecture for NoC [29].
Dally and Towles proposed router architecture for
packet-based switching [15]. The design of virtual
channels is another important aspect of NoC. A virtual
channel splits a single channel into two (or more)
channels, virtually providing two (or more) paths for
the packets to be routed over. Bjerregaard and Sparso
implement a virtual channel router using
asynchronous circuit techniques [30]. Another
important aspect of NoC is the design of
interconnects. Brager et. al. propose transmission line
based design of interconnects for NoC [31].
Morgenshtein et. al. provided a comparative analysis
for serial and parallel links for interconnect
implementation [32]. Bertozzi et. al. proposed error
detection and correction schemes for data on NoC
links [33]. Lee et. al. propose an integrated NoC
implementation [34].

III. MOCS FOR MODELING NOC
In this section, we address below the various

MOCs needed to model NoC.

3.1 NOC at System Level (Global Region)

At the system (top) level, the NoC model must be
defined at a high level of abstraction for it to be useful
for performance evaluation. Lower level (RTL
(Register transfer Level) code, VLSI (Very large
Scale Integration), and Source code) issues, while
appropriate for the design level, would slow down the
trade-off analysis. Assume that a digital camera’s
processing is implemented on an NoC; then the
system level issues to be addressed would be
resolution, image size, power dissipation and cost,
which we would refer to as parameters. We should be
able to adjust one of these parameters to fine tune

system performance and yield different combinations
of cost-performance-QoS-power dissipation. One may
wish to do this on a dynamic basis for better power
management of the system in the field. Thus, we can
argue that at system level we would need some a kind
of a manager to dynamically optimize the system
level design parameters.

At the same time such a control (manager) should
have some level of concurrency in time domain. This
is due to the fact that control (manager) might have to
optimize two or more different local regions at the
same time. This requirement rules out a finite state
machine (FSM) model to sit at the top as a manager.
At the system level this manager should be able to
observe and control only those signals, which are
changing their state or behavior rather than
monitoring all the signals at every clock event. A
discrete event simulation at the system level would
suite such a requirement.

Another possible MOC to model global
communication and management in NoC, with
asynchronous mechanisms, is the process network
(PN). This MOC was described by Kahn and
McQueen. Two important properties of the PN
domain which make such computation plausible are
that processes communicate asynchronously and that
the memory used in the communication is unbounded.
Any practical implementation of PN cannot support
an infinite memory requirement; therefore we specify
upper bound for memory requirements whenever
possible. The PN domain has the capability to model a
system as a network of processes that communicate
with each other by passing messages through
unidirectional first-in-first-out channels.

3.2 NoC at Subsystem Level (Local Region)

The local region for NoC is again divided into two
different domains as NoC at subsystem level and NoC
at component level. At sub-system level we address
local issues (as relating to a particular subsystem)
rather than the global issues. Such a sub-system will
usually be some DSP sub-system, IP-core, FPGA, or
application specific integrated circuit (ASIC). This
subsystem in conjunction with the packet switching
network would be required to consume some fixed
amount of data (tokens) at the input and to produce
some fixed amount of data (tokens) at output that will
be routed over the network. Synchronous data flow
(SDF) is one such MOC which has appropriate
properties. At subsystem level, there is also some
need for a small control element. This control element
would be required to address the synchronization
issue at that subsystem level only, making FSM as
another feasible MOC for the subsystem level.

3.3 NoC at Component Level (Local Region)

A component is another essential part of the local
region. These components together would constitute

Dr.A.Arul Lawrence selvakumar /International Journal of Engineering and Technology Vol.1(2), 2009, 50-62

54

the higher subsystem level. At this level designer will
not have to worry about addressing the system wide
concurrency and synchronization issues and the
design should be highly reusable to be able to be
utilized in other products and scalable to be mapped
into the higher domains, viz., the subsystems and the
systems. This component level would comprise of
software components, and a computation part which
in turn could be represented by electronic components
and computer architecture components. For electrical
components to be specified in such domain, we can
use mathematical equations to represent properties of
the model; continuous time (CT) MOC is a feasible
solution here. Hierarchical FSM can contribute to
synchronization among the software elements and the
hardware components at component level where each
state can be programmable in itself. Such a state
machine is often referred as a state chart, where each
state has trigger, action and guard conditions. At the
same time we may also utilize SDF MOC to model
the architectural issues.

IV. ONOC CUSTOMIZABLE PARAMETERS
ONoC model support component customization.

This customization has been provided in the form of a
drop-down menu. Such facility eases the task of a
design architect. He/she can now change the actual
system model to understand the impact of various
design parameters without the need for changing the
actual design. Thus, it has potential to provide a more
effective analysis of the result by investing less time
as compared to the traditional ways of performance
analysis. These customization parameters are
discussed below:

4.1 Buffer Size

We can change the buffer size to any value. By
changing the buffer size, we can understand its impact
on latency, area and therefore the silicon cost.

4.2 Priorities

We provided three priority levels for data packets
in our ONoC model: High priority, Mid priority and
Low priority. High priority supports control signals
such as Read (RD), Write (WR), Acknowledge
(ACK), and interrupts. Therefore, high priority data is
a short packet (single flit packet). Mid priority
supports real-time traffic on the system, while Low
priority supports non-real time block transfers of data
packets. We have defined control signals as a high
priority because the data must respond to a right
control signal. Therefore, a control signal must reach
its destination in time to manage the communication
flow of the network. Equally important is to ensure
the delivery of real-time data in real-time bounds.
Therefore, we have assigned Mid Priority to real-time
data. Rest of the data on the network belongs to low

priority class of data traffic. Number of priority levels
is a customizable parameter.

4.3 Input and Output Buffer Scheduling
Criteria

Buffer forwards the data to the next block based
on its scheduling criteria. We provided three
scheduling criteria (also referred as service levels
(SL)): First-Come-First-Serve (FCFS), Priority Based
(PB), and Priority-Based-Round-Robin (PBRR).

4.4 Scheduler Scheduling Criteria

Scheduler also supports different scheduling
criteria. Thus, in a network we can have a
combination of scheduling algorithms. Scheduler
supports FCFS, Round-Robin (RR), PB, and PBRR.
A scheduler is connected with five Input Buffers and
five Output Buffers.

4.5 Routing Algorithm

Routing algorithms is another important
parameter. There are three different routing
algorithms included in the model. These algorithms
are: X-Direction First, Y-Direction First and XY-
Random.

4.6 Packet Injection Rate

Packet Injection Rate represents the number of
flits per cycle injected into the network for
transmission. We have defined it as a customizable
parameter to test our ONoC model for varying load
conditions. Injection rate is changed from 0.1 to 1.0 at
equal increments of 0.1 to check the resultant network
latency. An injection rate of 1.0 represents that a
producer class outputs a flit every clock cycle.
Similarly, a rate of 0.33 represents the injection of a
flit in every three clock cycles.

V. ONOC MODEL
ONoC has been designed in an object oriented

manner. In this section we discuss our ONoC model
and its classes.

5.1 Producer Class

Producer comprises a resource and a resource
network interface. Producer generates the required
traffic pattern and packetizes the data into flits. A flit
is the smallest unit of communication supported in
ONoC. The customizable parameters for Producer are:
(1) The distribution pattern of the data; (2) Amount of
data generated as a function of time (throughput); (3)
Priorities of the generated data - High, Mid or Low;
and (4) The source and the destination addresses for
the data (route information).

We used three statistically generated traffic
distribution patterns – uniform traffic with linear
destination, random and application specific patterns.
Producer outputs a flit when buffAvail is asserted by

Dr.A.Arul Lawrence selvakumar /International Journal of Engineering and Technology Vol.1(2), 2009, 50-62

55

Buffer. A flit is time-stamped at the time of its
generation. The timestamp is used to determine the
latency involved in delivering the flit. The source and
destination address fields of the flit header are updated
at this time. Flit header has fields for its priority,
timestamp, x-direction of source address, y-direction
of the source address, x-direction of the destination
address, and the y-direction of the destination address.
The priority of this flit is governed as per a statistical
distribution block. For example, in case of a uniform
distribution pattern, every third flit will be a high
priority flit. Once the new flit has its timestamp,
source and destination address and priority fields
updated, it is then forwarded to the output through
dataOut. Producer class has been implemented with
SDF MOC as it is responsible for continuous data
flow.

5.2 Input Buffer Class

Input Buffer stores the incoming flits, generates
the proper handshaking signals to communicate with
Scheduler and forwards the flits to a Router. A data
forwarding path has been implemented based on a
“request-grant” signaling approach (other NoC
implementations refer to it as flow control logic).

Incoming flits corresponding to all the priority levels
(High, Mid and Low) are stored in a common buffer.
Let buffSize represent all the available space in an
Input Buffer. The buffAvail indicates whether there is
space available in Input Buffer. The stored data flits
are forwarded to Router based on their scheduling
criteria. For example, in case of Priority Based
scheduling, High priority flits are forwarded before
the Mid or Low priority flits, etc. Table 1 shows the
classification of flit types.

TABLE I. FLIT PRIORITY BIT COMBINATIONS

Bit Combination Flit Types

00 No Flit
01 High Priority Flit
10 Mid Priority Flit
11 Low Priority Flit

Figure 2 (a) and (b) show the internals of Input
Buffer Class. (a) represents the input side of the Input
Buffer implementation while (b) represents the output
side of Input Buffer implementation.

 (a) (b) (c)

Figure 2. Internals of Input Buffer Class

Input buffer is virtually divided into three different

buffers A, B and C (see Figures 2 (a) and (b)). We
have provided flexibility in the size of these virtual
buffers (the combined size is a fixed user defined
parameter). Input side (Figure 2 (a)) is responsible for
checking the available buffer space and allocates a
memory space for an incoming flit. Output side
(Figure 2 (b)) forwards a flit and releases the allocated
memory. Figure 2 (C) combines Figures 2 (a) and (b).

We have implemented a handshaking protocol for
forwarding a flit. The availability of data flits in Input
Buffer for further transmission is indicated by
dataInBuff. If a grant comes in response to this
request (nodeGrant), the flit stored in the buffer is
forwarded to the corresponding Router. Table 2 shows
the bit allocation of nodeGrant.

TABLE II. NODEGRANT BIT ALLOCATION

Bit Combination Flit Types

00 No Flit
01 High Priority Flit
10 Mid Priority Flit
11 Low Priority Flit

On receipt of nodeGrant, a data packet is forwarded
by the output side of the input buffer through dataOut.
Figure 2 (c) shows the complete implementation of
input side and output side of input buffer class. Three
virtual buffers as shown in Figures 2 (a) and (b) are
represented as memories (M) in Figure 2 (C). A flit is
not removed from Input Buffer until a confirmation
(via confirm) is received from Scheduler (from the

Dr.A.Arul Lawrence selvakumar /International Journal of Engineering and Technology Vol.1(2), 2009, 50-62

56

output side of Figure 2 (C)). If confirm is not
received, the data flit is not removed from Input
Buffer; however, it will be queued for later
forwarding. We provided three virtual channels per
buffer. A VC controller inside input buffer updates
these virtual channels. We implemented input buffer
class with DE MOC. DE domain facilitates signaling
protocol thus, an ideal choice for implementing
handshaking protocols.

5.3 Scheduler Class

Scheduler handles the control part of the Router
class. It schedules the incoming requests for data

transmission to the next node, by checking for the
availability of the output data path and by arbitrating
the requests from various Input Buffers associated
with it. The data and control part of a node have been
separated (Router class handles the data part and
Scheduler class handles the control signals) in order to
manage concurrency issues and make the design more
scalable and reusable. Figure 3 shows the MLD
implementation of the Scheduler class. The Scheduler
is connected to five instances of Input Buffer (one for
each direction in the 2-D mesh network and a fifth
buffer for the local Producer class connected through
a NI) and, similarly, five instances of Output Buffer
on the output side.

Figure 3: MLD implementation of the Scheduler class

Scheduler accepts the requests from an Input
Buffer via dataInBuff (the input signal on the left side
of Figure 3) and allocates the data path to by asserting
nodeGrant (the output signal on the left side of Figure
3). The data path allocation is based on the availability
of an Output Buffer and the route. We have embedded
multiple algorithms in scheduler class as discussed in
previous section. Scheduler will select an input buffer
from multiple input buffers requesting for
transmission of data packet. Router informs Scheduler

about the physical output path for flit transmission via
outputPort. Availability of the data path is
acknowledged by assertion of confirm. This
interaction between Scheduler and Router is shown in
Figure 4. Scheduler class is implemented in two
different MOCs. The control part scheduler has been
implemented with FSM. This FSM interacts with DE
domain for proper handshaking with Input buffer and
router on the input side and output buffer on the
output side of scheduler.

Dr.A.Arul Lawrence selvakumar /International Journal of Engineering and Technology Vol.1(2), 2009, 50-62

57

Figure 4: Interaction between Scheduler and Router Classes

5.4 Router Class

Router (we refer it as Node in Figure 4)
determines the output path and handles the actual data
transfer on the implemented backbone. A dimension-
order routing protocol was implemented in the Router
class for determining the output path. We have
provided customization in routing algorithms as
discussed in earlier section. Upon receipt of data,
Router extracts the destination information and
determines the physical output port for transmitting
the data. This output port address is sent to Scheduler,
which determines the availability of this port. Upon its
availability, data flits are then forwarded to the
corresponding Output Buffer for this port.

5.5 Output Buffer Class
Output Buffer accepts the incoming flits from

Router and forwards these flits to the Input Buffer of
the next node. It is implemented in the form of the
two concurrently executing state machines. The
received flits are stored in the Output Buffer memory.
The input state machine accepts and stores the data

flits while there is available memory in Output Buffer.
Upon the request of Scheduler by reqBuffAvail,
availability of buffer space in Output Buffer is
signaled by buffAvail. The output state machine
senses the request for transmitting data from Output
Buffer of the next Router via outputBuffAvail of that
Output Buffer and forwards the data flit, if that signal
was asserted.

5.6 Consumer Class
Consumer comprises a computing resource and a

network interface (NI). Consumer accepts data flits,
strips off the header information, and forwards the
remainder of the data to its internal computing
resources. Similar to producer, consumer consumes
data packets. Thus, we have implemented consumer in
SDF domain

VI. SIMULATION RESULTS
We have simulation ONoC model with different

injection rates (varying from 0.13 to 1.0), buffer sizes
(1 through 5 and 10), scheduling criteria (PB, PBRR,

Dr.A.Arul Lawrence selvakumar /International Journal of Engineering and Technology Vol.1(2), 2009, 50-62

58

FCFS, RR). We have computed the results for High,
Mid, and Low priority latency and NOC area.

6.1. Latency Results

The minimum latency for a single hop will be 6
clock cycles due to synchronization signals
(concurrency cost) among different components: 1st
clock cycle for storing data flit into the Input Buffer
(buffAvail); 2nd clock cycle for requesting data output
to Scheduler (dataInBuff); 3rd clock cycle for
receiving the grant signal from Scheduler
(nodeGrant); 4th clock cycle for forwarding the data to
Router (dataOut); 5th clock cycle for confirming the
output path availability (reqBuffAvail); 6th clock cycle
for forwarding the data packet to the output buffer
(dataOut). Thus, each hop will introduce at least six
clock cycles of latency. For simulation of ONOC, we
injected 10,000 flits into the network. High priority
flits are used for transmitting control signals such as
MemRD (Memory Read), MemWR (Memory Write),
IORD (Input/Output Read), IOWR (Input/Output
Write), and interrupts among others, while Mid
priority flits and Low priority flits are used for

transmitting real-time data and non-real time block
transfers, respectively. For network simulation,
control signals were assumed to account for 10 % of
the total data traffic flow, with real-time data and non-
real time data accounting for 20 % and 70 %,
respectively. However, this traffic load can be altered
as it being a customizable parameter.

Figures 5 (a), (b), and (c) show High, Mid, and
Low priority data latency for two hops against traffic
injection rate with FCFS scheduling and dimension
order routing respectively. These plots have been
drawn for different buffer sizes. Thus, there are three
parameters: Buffer Size, Injection Rate, and Latency.
In FCFS algorithm, data latency results for all three
priorities are almost the same. It is because FCFS
does not prioritize the data packets. Thus, all the
priorities suffer almost the same latency. As the buffer
size increases from 1 to 10, the data latency also
increases from 14 to 107. With larger buffer size, a
data packet has to wait in the buffer for a longer time.
Thus, we have higher data latency with larger buffer
size.

 Figure 5a Figure 5b

 Figure 5c Figure 6a

Dr.A.Arul Lawrence selvakumar /International Journal of Engineering and Technology Vol.1(2), 2009, 50-62

59

 Figure 6b Figure 6c

Figure 5 (a), (b), and (c): High, Mid, and Low Priority Data Latency Vs Injection Rate for Different Buffer Sizes
with FCFS Scheduling Respectively

Figure 6 (a), (b), and (c): High, Mid, and Low Priority Data Latency Vs Injection Rate for Different Buffer Sizes
with PBRR Scheduling Respectively

Figures 6 (a), (b), and (c) show High, Mid, and

Low priority data latency for two hops against traffic
injection rate with PBRR scheduling and dimension
order routing respectively. In case of PBRR
scheduling criteria, High priority data packet must
secure the lowest latency while the Low priority must
have the highest latency. From Figure 6 (a), (b) and
(c), data packet latency for the high priority varies
from 8 to 30 clock cycles, mid priority varies from 15
to 36 clock cycles and low priority data varies from
15 to 140 clock cycles. The main advantage of such
an algorithm is its capability to serve all the five input
buffers connected with the scheduler at the same time.
Each Input Buffer receives equal scheduler response.
The latency results of this algorithm are very similar
to RR scheduling due to its nature of rotating and

serving each Input Buffer in a RR fashion. However,
it provides better results when more than three Input
Buffers are producing data at the same time. In such
scenario, a RR scheduling will not be able to deliver
the High priority data in time. However, PBRR will
work effectively under such a condition.

6.2 Comparison of Different Scheduling Criteria
In a real-time embedded system, it is must that a

system responds to the real-time requirements. Our
underlying architecture must make sure to deliver
real-time data and required control signals for this
data processing in timely manner. Consequently, we
must select scheduling criteria that can perform this
task. Figure 7 shows High Priority data latency result
against buffer sizes for different scheduling criteria.

Figure 7: High Priority Data Latency Vs Buffer Size Figure 8: Low priority Data Latency For PB and
 For Different Scheduling Criteria PBRR Scheduling

In Figure 7, it can be seen that FCFS and RR may
not always deliver High priority data packets in real-
time bounds. Thus, we should use either PBRR or PB
scheduling criteria for our NOC architecture. We used

Low priority data latency results for finally choosing
the scheduling criteria between PBRR and PB
scheduling. Figure 8 shows Low priority data latency
against buffer sizes for PBRR and PB scheduling

Dr.A.Arul Lawrence selvakumar /International Journal of Engineering and Technology Vol.1(2), 2009, 50-62

60

criteria. PB scheduling delivers the High priority data
and Mid priority data in timely manner. However, it
has higher latency for low priority data. Thus, we
recommend using PBRR as the scheduling criteria for
NOC architecture.

6.3 Area Results for NOC Parameters

We implemented all the NoC classes with Field
Programmable Gate Arrays (FPGA) to extract the
total NoC area and area information of each
component. Figure 9 shows the area result for a 32-bit
and 64-bit Input Buffer and Output Buffer
implementations. These area results are not directly
proportional to the buffer size i.e. a linear relationship
between buffer size and number of gates does not
exist. This is mainly because of two reasons: (1) Our
Input Buffers and Output Buffers have scheduling
capability, along with the functions of storing and
forwarding the data packets. This scheduling circuit

does not depend upon the buffer size. Therefore,
buffer of a size two will not have double the number
of gates as compared to a buffer of size one. (2) The
internal architecture of an FPGA is divided into
several Configurable Logic Blocks (CLBs) along with
other components such as Digital Clock Manager
(DCM) and block Random Access Memory (BRAM).
A CLB is further divided into four slices. Architecture
of each CLB is identical. The number of gates is
calculated by multiplying the number of occupied
slices with the total number of gates in a single slice.
Thus, the equivalent FPGA implementation will count
the total number of gates for a slice even if it is not
fully occupied. Similarly, if we use a part of BRAM
for storing the data packet/flits, then we account for
total number of gates for that BRAM. Consequently,
we will not see a linear relationship between the
buffer size and the number of gates.

Figure 9: Number of Gates for ONoC Buffer Figure 10: Number of Gates for ONoC Classes

Figure 10 shows area result for different
scheduling criteria (RR, PB, FCFS, and PBRR), and
Router. Router handles the actual data transfer, thus
has dedicated lines for sending and receiving data bits.
Thus, Router takes more number of gates than
Scheduler.

6.4. Impact of Buffer Size on NOC Area

There are eighty input buffer and eighty output
buffers in a 4×4 mesh based NoC. Thus, buffer size is
a key parameter for deciding the number of gates used
in NoC architecture. Figure 11 shows the High, Mid
and Low data latencies against different 64-bit buffer
sizes for PBRR scheduling. We also provided the total

NOC area (gate count) for different buffer sizes with
PBRR scheduling criteria (see Figure 12). Buffer size
of 10 produces a high value of Low priority data
latency (82.4 clock cycles). Thus, we do not
recommend using a buffer size of 10. A buffer size of
1 and 2 will have lower values of High priority data
latency, however, they may not provide sufficient
amount of buffering needed in a network. High and
Mid priority data latency for buffer sizes of 3, 4, and
5, is almost similar. A buffer size of more that 5 will
have more number of gates; consequently the leakage
current will also increase. Therefore, we recommend
using buffer sizes of 3, 4, or 5 for NOC architecture.

Dr.A.Arul Lawrence selvakumar /International Journal of Engineering and Technology Vol.1(2), 2009, 50-62

61

 Figure 11: Latency Vs NoC Area with PBRR Figure 12: Latency Vs Injection Rate for Maximum Load
 Scheduling and Different Buffer Sizes Scheduling and Buffer Size of 5 Condition with PBRR

6.5. NoC Simulation with Maximum Load

Condition

We further simulated NOC architecture with
maximum load. We referred to maximum load
condition when all the sixteen nodes in a 4×4 NOC
are producing and consuming data packets. We have
simulated such network load for calculating High
priority, Mid priority, and Low priority data latencies
with buffer size of 5 and PBRR scheduling (our one
of the recommended NOC configuration). Even in
case of the maximum load condition, which are rare
the High Priority data latency is about 55 clock
cycles, Mid priority data latency is about 63 clock
cycles, and Low priority data latency is in the range of
200-250 clock cycles. Therefore, we recommend that
an architect must over-dimension NOC architecture if
there is a possibility of all the NOC nodes to consume
and produce data packets simultaneously. Such over-
dimensioning of the network will reduce the data
latency for embedded systems.

VII. 5.5. CONCLUSION
We have developed a methodology to realistically

model and optimally design the communication
backbone of a NoC. The model is built with reusable
and customizable building blocks, which are abstract
enough to facilitate quick analysis. The modeling
environment chosen supports multiple models of
computation, which helps with both fast model
building and simulation. As an example of the
model’s use, we chose three priority levels to show
that the communication backbone can be designed to
optimally meet different latency requirements even
when the traffic patterns are markedly different

We studied various simulation platforms such as
Ptolemy, Modeling Environment for Software
hardware (MESH), OPNET and MLD, to identify the
right simulation environment. We determined that
MLD was suitable for our work because of its support
for multiple MOCs (Models of Computation). We
have modeled our classes and their instances using

three different domains: finite state machine (FSM),
synchronous data flow (SDF) and discrete events
(DE). We performed the top level simulation of the
overall model in the DE domain; this executes the
simulation substantially faster than otherwise.

VIII. REFERENCES
[1] G. Desoli, E. Filippi, “An outlook on the evolution of mobile

terminals: from monolithic to modular multi-radio, multi-
application platforms”, IEEE magazine on Circuits and
Systems, vol. 6, No. 2, pp. 17-29, 2006

[2] W.C. Rhines, “Sociology of design and EDA”, IEEE
Transaction of Design and Test, vol. 23, issue 4, pp. 304-310,
April 2006.

[3] E. A. Lee, Yuhing Xiong, “System level types for
component-based design, Workshop on Embedded Software,
California, October 2001

[4] Y. Xiong and E. A. Lee, “An extensible type system for
component-based design”, International Conference on Tools
and Algorithms for the Construction and Analysis of Systems,
Berlin, Germany, April 2000.

[5] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S.
Stergiou, L. Benini, and G. De Micheli, “NoC synthesis flow
for customized domain specific multiprocessor SoC”, IEEE
Trans. on Parallel and Distributed Systems, vol. 16, no. 2,
pp. 113-129, February 2005.

[6] S. Kumar, A. Jantsch, J-P. Soininen, M. Forsell, M. Millberg,
J. Oberg, K. Tiensyrja, and A. Hemani, “A Network on Chip
architecture and design methodology”, In IEEE Computer
Society Annual symposium on VLSI, pp. 117-124, 2002

[7] A. Agarwal, R. Shankar, “Modeling concurrency on NoC
architecture with symbolic language: FSP”, IEEE
International Conference on Symbolic Methods and
Applications to Circuit Design, Oct 2006, (To Appear in Oct)

[8] J. Burch, R. Passerone, A.L. Sandivanni-Vincentelli,
“Overcoming heterophobia: modeling concurrency in
heterogeneous systems”, IEEE International Conference on
Application of Concurrency to System Design, pp. 13-32,
June 2001

[9] E. A. Lee, A. Sangiovanni-Vincentelli, “Comparing models
of computation”, IEEE/ACM International Conference on
Computer-Aided Design, ICCAD-96, pp. 234-241,
November 1996.

[10] A. Jantsch, I. Sander, “Models of computation and languages
for embedded system design”, IEEE Proceedings on
Computers and Digital Techniques, vol. 152, Issue 2, pp.
114-129, March 2005

Dr.A.Arul Lawrence selvakumar /International Journal of Engineering and Technology Vol.1(2), 2009, 50-62

62

[11] L. Benini and G. De Micheli. Networks on chip: a new SOC
paradigm, IEEE Computer, vol. 35 No. 1, January 2002, 70-
78

[12] J. A. Meine and W. Wayne, MultiprocessorSystem-On-Chips.
Morgan Kaufmann Publisher, 2005.

[13] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Öberg, M.
Millberg, and D. Lindqvist, “Network on Chip: an
architecture for billion transistor era”, Proc. of IEEE
NorChip Conference, pp. 8-12, November 2000.

[14] A. Jantsch and H. Tenhunen. Networks on Chip, Kluwer
Academic Publisher, 2003.

[15] W. J. Dally and B. Towles, “Route packets, not wires: on-
chip interconnection networks”, IEEE International
Conference on Design and Automation, pp. 684-689, June
2001.

[16] A. Agarwal, R. Shankar, “A Layered Architecture for NOC
Design methodology”, IASTED International Conference on
parallel and Distributed Computing and Systems, pp. 659-
666, 2005

[17] D. Kim, M. Kim, and G.E. Sobelman, “CDMA based
network-on-chip architecture”, IEEE Asia-Pasific Conference
on Circuits and Systems, vol. 1, pp. 137-140, December
2004.

[18] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and
C.A. Zeferino, “SPIN: a scalable, packet switched, on-chip
micro-network”, IEEE Conference and Exhibition on Design,
Automation and Test in Europe, pp. 70-73, 2003.

[19] P. Pratim Pande, C. Grecu, M. Jones, A. Ivanov, and R.
Saleh, “Performance evaluation and design trade-offs for
network-on-chip interconnect architectures”, IEEE
Transactions on Computers, vol. 54, no. 8, pp. 1025-1040,
Aug. 2005.

[20] P. Bhojwani, R. Mahapatra, J. K. Eun, and T. Chen, “A
heuristic for peak power constrained design of network-on-
chip (NoC) based multimode systems”, IEEE International
Conference on VLSI Design, pp. 124-129, 2005.

[21] P. Bhojwani, R. Mahapatra, “Interfacing Cores With on-chip
packet-switched networks”, In IEEE Proceedings of the 16th
International Conference on VLSI Design, pp. 382–387,
2003.

[22] D. Bertozzi and L. Benini, “Xpipes: A network-on-chip
architecture for gigascale systems-on-chip”, IEEE Circuits
and Systems Magazine, vol. 4, no. pp. 18-31, 2004.

[23] E. Rijpkema, K. Goossens, A. Radulescu, J. Dielissen, J. van
Meerbergen, P. Wielage, E. Waterlander, “Trade-offs in
the design of a router with both guaranteed and best-effort
services for networks on chip”, IEEE Proceeding on
Computers and Digital Techniques, vol. 150, Issue 5, 22, pp.
294-302, 2003

[24] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez,
C.A. Zeferino, “SPIN: a scalable, packet switched, on-chip
micro-network, IEEE Conference and exhibition on, Design,
Automation and Test in Europe Conference and Exhibition,
pp. 70-73, 2003

[25] I. Saastamoinen, M. Alho, J. Nurmi, “Buffer
implementation for Proteo network-on-chip”,
International IEEE Proceeding on Circuits and
Systems, vol. 2 pp. 113-116, 2003

[26] A. Siebenborn, O. Bringmann, and W. Rosenstiel,
“Communication analysis for network-on-chip design”, IEEE
International Conference on Parallel Computing in
Electrical Engineering, pp. 315-320, September 2004.

[27] J. Hu and R. Marculescu, “Energy-aware Communication
and task scheduling for network-on-chip architectures under
real-time constraints”, IEEE Conference and Exhibition on
Design, Automation and Test in Europe, vol. 1, pp. 234-239,
February 2004.

[28] J. Madsen, S. Mahadevan, K. Virk, and M. Gonzalez,
“Network-on-chip modeling for system-level multiprocessor
simulation”, IEEE 14th Conference on Real-Time Systems,
pp. 265- 274, 2003.

[29] P.T. Wolkotte, G.J.M. Smit, G.K. Rauwerda, and L.T. Smit,
“An Energy-Efficient Reconfigurable Circuit-Switched
Network-on-Chip”, 19th IEEE International Conference on
Parallel and Distributed Processing Symposium, pp. 155-
163, 2005.

[30] T. Bjerregaard and J. Sparso, “Virtual channel designs for
guaranteeing bandwidth in asynchronous network-on-chip”,
IEEE Proceedings on Norchip Conference, pp. 269 – 272,
November 2004.

[31] A. Barger, D. Goren, and A. Kolodny, “Design and modeling
of network on chip interconnects using transmission lines”,
11th IEEE International Conference on Electronics, Circuits
and Systems, pp. 403-406, December 2004.

[32] A. Morgenshtein, I. Cidon, A. Kolodny, and R. Ginosar,
“Comparative analysis of serial vs parallel links in NoC”,
IEEE International Proceedings on System-on-Chip, pp. 185-
188, November 2004.

[33] D. Bertozzi, L. Benini, and G. De Micheli, “Error control
schemes for on-chip communication links: the energy-
reliability tradeoff”, IEEE Transactions on Computer- Aided
Design of Integrated Circuits and Systems, vol. 24, no. 6, pp.
818-831, June 2005 .

[34] S. J. Lee, K. Lee, S.J. Song, and H.J. Yoo, “Packet-switched
on-chip interconnection network for system-on-chip
applications”, IEEE Transactions on Circuits and Systems II,
vol. 52, no. 6, pp. 308-312, June 2005

