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Abstract: Models of computation (MOC) provide a 
framework to model various algorithms and activities, 
while accounting for and exploiting concurrency and 
synchronization aspects.. Further, a combination of 
these MOCs may be needed to truly represent a given 
Network-onChip (NOC) region and may further differ 
from a global to a local region. We have analyzed 
various models of computation (MOC) suitable for 
NoC. We have modeled a concurrent architecture for a 
customizable and scalable NOC in a system-level 
modeling environment using MLDesigner. MLDesigner 
provides a system level modeling platform, which allows 
one to integrate such MOCs together. We provide 
simulation results for various scheduling criteria, 
injection rates, buffer sizes, and network traffic. We 
abstracted area results for a 4×4 mesh based NoC from 
its Field Programmable Gate Arrays (FPGA) 
implementation. We have further quantified all the 
results and presented them from a system architect’s 
view.  

I. INTRODUCTION 
A system design process is inherently complex. 

The design involves multiple representations, multiple 
(design) groups working on different design phases, 
and a complex hierarchy of data and applications [1]. 
The different groups bring different perspectives 
towards system design. The system or product 
inconsistencies primarily arise out of lack of 
appropriate communication among various design 
teams. For example, concerns of a hardware (HW) 
design engineer are different from that of a software 
(SW) designer and they are often unable to understand 
and help address the problems of the other [2]. Such 
constraints lead to increase in product development 
cycle and product development cost, thereby reducing 
system design productivity [3]. To enhance this 
declining productivity, one will have to exploit the 
principle of “design-and-reuse” to its full potential [4]. 
Then, a system (subsystem) would be composed of 
reusable sub-systems (components).  

Network-on-Chip (NoC) architecture can improve 
this declining design productivity by serving as a 
reusable communication sub-system for an embedded 
device [5]. NoC provides an multi-core architecture 

for managing complexity by incorporating 
concurrency and synchronization. This NoC 
architecture may comprise of components such as, 
routers, input and output buffers, network interface, 
switch, virtual channel allocator, scheduler and a 
switch allocator [6]. To develop a system from such 
reusable components, one will have to design and 
develop variants of each component. For example, 
buffer size is a customizable parameter for an input 
buffer. Similarly, scheduling criteria provides 
customizability for scheduler component. A system 
architect estimates performance and Quality-of-
service (QoS) parameters for various system 
configurations. Components need to encapsulate their 
performance metrics for various useful parameter 
combinations, in order to help the architect to make 
informed decisions. We propose that a system be 
modeled in advance of the architect’s design phase. 
Such a model is analyzed to ensure system 
functionality at an abstract manner. This model can 
then be ported to architect’s design phase, for 
analyzing the performance of a system and for 
estimating the resources needed for mapping an 
application on to the system. This model must allow 
one to manipulate a set of parameters to fine tune 
system performance. Such a system model needs to 
have high level representation of various performance 
and QoS parameters for subsystems and components. 
These performance and QoS parameters can then be 
traded-off against each other in the system model, to 
yield a global optimization. Such a model at the 
design phase will allow one to make key decisions 
and reduce the scope of the multidimensional search 
space. These key decisions may include the number of 
processors, HW-SW partitioning, estimated 
performance values for new components, and the use 
of existing components in SW or HW. Such design 
decisions have the potential to significantly enhance 
productivity of system design.  

Such system modeling, analysis and design will 
not be an effective solution until we have a 
mechanism for modeling of concurrency and 
synchronization issues [7]. This requires 
representation of various activities and algorithms 
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with appropriate MOC (Models of Computation) [8]. 
This defines our two goals for the system level 
designers: (1) To model the system functionality well 
in advance of building the actual computing system in 
order to provide a level of flexibility in system design. 
(2) To be able to manipulate an abstract set of design 
elements simultaneously to generate different sets of 
QoS (Quality of Service) parameters and performance 
metrics and fine tune the system model.  

A MOC is a mathematical formalism that captures 
and allows us to reason about a computational system 
or concept independent of its implementation details. 
Different MOCs have evolved to represent the 
reasoning in different areas of focus [9]. A 
synchronous local region of an NoC might require one 
or more such MOCs to co-exist and interact. Further, 
to reduce simulation time and to integrate the 
subsystems into an integrated system model, other 
MOCs may be needed. Thus, several MOCs are 
needed for modeling an integrated system [10]. In 
such a system each component or the subsystem of the 
system should be able to use any allowed MOC and 
more importantly should retain its behavior after 
integration of the system. Consider also the case in 
which a subsystem uses two or more local regions (or 
islands) of the NoC. These are connected by a switch 
in an NoC. For example consider a digital camera as a 
component, or as a subsystem of a much larger 
system, such as a wireless handheld device (system). 
It is possible that its design would not fit into one 
local region. Under such a scenario we should also be 
able to address the concurrency and synchronization 
issues because of shared resources (both local and 
global). We have integrated appropriate models of 
computation to model our NoC architecture.  

In this paper we discuss various MOCs that can be 
used for modeling NoC architecture. We present a 
system-level model of the our NoC, called ONoC, 
after our Motorola funded project entitled “One Pass 

to Production,” where our goal is to develop a 
seamless integrated methodology for developing a 
mobile embedded system . ONoC is a quality-of-
service driven, customizable, and parametriziable 
NoC implementation. We have combined different 
MOCs together to represent NoC model. ONoC 
model has been tested for different injection rates and 
distribution patterns. We provide latency results for 
different buffer sizes, scheduling algorithms, and NoC 
area. We abstracted area results from its FPGA 
implementation.  

1.1 NOC Architecture Description 

A NoC is designed as a layered architecture and 
mainly comprises of two layers: communication 
protocol and communication backbone. 
Communication Protocol layer consists of the 
Network Interface (NI) and is responsible for 
decoupling communication from computation and 
packetization/depacketization. The Communication 
Backbone layer, on the other hand, is instantiated with 
three components: routers, buffers and links. Figure 1 
shows a 3×3 mesh based NOC architecture. In Figure 
1, Bi, Bo, P, C, N, S and NI represent input buffer, 
output buffer, producer, consumer, node, scheduler 
and network interface respectively. Links provide 
connection to various buffers, node/scheduler, and 
buffer. The routers are connected to each other and to 
NI, as per a specific topology. The router block 
includes the Node (N) and the Scheduler (S). S is 
responsible for controlling the traffic flow while the 
actual data is router via a N. The Communication 
Backbone layer supports routing, switching priority 
based communication, and flow control logic. A 
resource such as processor, memory, field 
programmable gate array (FPGA), application specific 
integrated circuit (ASIC), or any other hardware 
element, must be connected to routers or switches 
through an NI. 
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Figure 1.   NOC architecture 

 

II. BACKGROUND 
Advances in semiconductor technologies have led 

to continual and rapid transistor scaling; this will soon 
facilitate the integration of a billion transistors on a 
small size integrated circuit [11]. Traditional SoC 
systems may integrate one or two general processors, 
with a few slaves as application specific processors 
(ASPs). Such a system is divided into several 
independent functional blocks, which are then 
designed, most likely as dedicated hardware engines 
(ASPs) or as tasks on one or two processors. These 
functional blocks synchronize their activities by 
means of local operating system(s) on the processor(s) 
and an on-chip communication bus such as AMBA 
[12]. With increasing user demands for 
computationally extensive applications on an 
embedded system, such as multimedia, real-time 
video communication, and 3-D video gaming, this 
model is no longer viable. Moore’s law predicts that a 
chip in 2010 will have more than four billion 
transistors operating in the multi-GHz range [13]. 
This is mainly due to the near exponential decrease in 
the transistor size enabling faster transistor switching 
times and more densely packed integrated circuits. 
Such computation power has posed some challenges 
which include the disparity in transistor and wire 
speeds, and increased power dissipation, leading to a 
decrease in the area of the chip which can be utilized 
with a single clock cycle [14]. Under such 
considerations, a single processor implementation will 
not suffice [12]. This has resulted in exploitation of 
multi-core architectures, thus driving the development 
of increasingly complex multi-processor systems-on-
chip (MPSoCs) [12]. The consequences of this trend 
imply a shift in concern from computation and 

sequential algorithms to addressing concurrency, 
synchronization and communication issues in every 
aspect of hardware and software co-design and 
development. As the technology scaling works better 
for transistors than for interconnecting wires [15], 
there is an increasing disparity between the wires and 
the transistors in terms of power consumption and 
latency. It is estimated that in the 50 nm technology, 
global wire delays and leakage current will become a 
dominant factor. On a billion transistor chip, it would 
not be possible to send a global signal across the chip 
in real-time [10, 11, 12, 13, 15]. As a result, achieving 
synchronization onto the system will be very difficult, 
if not impossible. A bus based SoC or MPSoC does 
not offer the required amount of reuse in order to meet 
the time-to-market requirements. This will continue to 
impact the productivity of system architects and 
designers. NoCs can improve design productivity by 
supporting modularity and reuse of complex cores, 
thus enabling a higher level of abstraction in the 
architectural modeling of future systems [16].  

Researchers have suggested various network 
topologies including a star-based NoC [17], a tree 
based implementation of NoC [18], mesh, torus and 
ring topologies [19]. New algorithms have been 
proposed to reduce power consumption while 
securing cost optimization [20]. Efficient router 
architectures have evolved for the NoC [12]. NI is 
responsible for packetization and depacketization of 
data traffic, in addition to conventional interfacing. 
This functionality may be implemented either with 
hardware or with software. Bhojwani and Mahapatra 
[21] compared software and hardware 
implementations of NI. They showed that the software 
implementation of NI takes about 47 cycles to 
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complete packetization/depacketization, while the 
hardware version takes only 2 cycles. Substantial 
research has been conducted to propose the right data 
formats needed for various layers in the protocol 
stack. Ethereal [23] and XPIPES [5], [23] NOCs use 
OCP protocol, while SPIN [24] and Proteo [25] NOCs 
have integrated Virtual Component Interface (VCI) 
protocol in their implementations. Various routing 
algorithms have been proposed for the NoC 
environment. Most of the researchers suggested static 
routing algorithms and have performed 
communication analysis for NoC based on static 
behavior of the processes, thus obtaining a static 
routing for NoC. Siebenborn et. al. used a 
communication dependency graph (CDG) to analyze 
inter-process communication [26]. Hu et. al. provided 
graph-based application decomposition and mapping 
strategies for NoC [27]. Madsen et. al. provided a 
real-time operating system (RTOS) architecture for 
NoC [28]. They provided RTOS-based application 
scheduling techniques for use on a NoC. Based on 
routing strategies, various router implementations 
have also been proposed. Wolkotte et. al. proposed a 
circuit switched router architecture for NoC [29]. 
Dally and Towles proposed router architecture for 
packet-based switching [15]. The design of virtual 
channels is another important aspect of NoC. A virtual 
channel splits a single channel into two (or more) 
channels, virtually providing two (or more) paths for 
the packets to be routed over. Bjerregaard and Sparso 
implement a virtual channel router using 
asynchronous circuit techniques [30]. Another 
important aspect of NoC is the design of 
interconnects. Brager et. al. propose transmission line 
based design of interconnects for NoC [31]. 
Morgenshtein et. al. provided a comparative analysis 
for serial and parallel links for interconnect 
implementation [32]. Bertozzi et. al. proposed error 
detection and correction schemes for data on NoC 
links [33]. Lee et. al. propose an integrated NoC 
implementation [34]. 

III. MOCS FOR MODELING NOC 
In this section, we address below the various 

MOCs needed to model NoC.   

3.1 NOC at System Level (Global Region) 

At the system (top) level, the NoC model must be 
defined at a high level of abstraction for it to be useful 
for performance evaluation. Lower level (RTL 
(Register transfer Level) code, VLSI (Very large 
Scale Integration), and Source code) issues, while 
appropriate for the design level, would slow down the 
trade-off analysis. Assume that  a digital camera’s 
processing is implemented on an NoC; then the 
system level issues to be addressed would be 
resolution, image size, power dissipation and cost, 
which we would refer to as parameters. We should be 
able to adjust one of these parameters to fine tune 

system performance and yield different combinations 
of cost-performance-QoS-power dissipation. One may 
wish to do this on a dynamic basis for better power 
management of the system in the field. Thus, we can 
argue that at system level we would need some a kind 
of a manager to dynamically optimize the system 
level design parameters. 

At the same time such a control (manager) should 
have some level of concurrency in time domain. This 
is due to the fact that control (manager) might have to 
optimize two or more different local regions at the 
same time. This requirement rules out a finite state 
machine (FSM) model to sit at the top as a manager. 
At the system level this manager should be able to 
observe and control only those signals, which are 
changing their state or behavior rather than 
monitoring all the signals at every clock event. A 
discrete event simulation at the system level would 
suite such a requirement.  

Another possible MOC to model global 
communication and management in NoC, with 
asynchronous mechanisms, is the process network 
(PN). This MOC was described by Kahn and 
McQueen. Two important properties of the PN 
domain which make such computation plausible are 
that processes communicate asynchronously and that 
the memory used in the communication is unbounded. 
Any practical implementation of PN cannot support 
an infinite memory requirement; therefore we specify 
upper bound for memory requirements whenever 
possible. The PN domain has the capability to model a 
system as a network of processes that communicate 
with each other by passing messages through 
unidirectional first-in-first-out channels. 

3.2 NoC at Subsystem Level (Local Region) 

The local region for NoC is again divided into two 
different domains as NoC at subsystem level and NoC 
at component level. At sub-system level we address 
local issues (as relating to a particular subsystem) 
rather than the global issues. Such a sub-system will 
usually be some DSP sub-system, IP-core, FPGA, or 
application specific integrated circuit (ASIC). This 
subsystem in conjunction with the packet switching 
network would be required to consume some fixed 
amount of data (tokens) at the input and to produce 
some fixed amount of data (tokens) at output that will 
be routed over the network. Synchronous data flow 
(SDF) is one such MOC which has appropriate 
properties. At subsystem level, there is also some 
need for a small control element. This control element 
would be required to address the synchronization 
issue at that subsystem level only, making FSM as 
another feasible MOC for the subsystem level.  

3.3 NoC at Component Level (Local Region) 

A component is another essential part of the local 
region. These components together would constitute 
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the higher subsystem level. At this level designer will 
not have to worry about addressing the system wide 
concurrency and synchronization issues and the 
design should be highly reusable to be able to be 
utilized in other products and scalable to be mapped 
into the higher domains, viz., the subsystems and the 
systems. This component level would comprise of 
software components, and a computation part which 
in turn could be represented by electronic components 
and computer architecture components. For electrical 
components to be specified in such domain, we can 
use mathematical equations to represent properties of 
the model; continuous time (CT) MOC is a feasible 
solution here. Hierarchical FSM can contribute to 
synchronization among the software elements and the 
hardware components at component level where each 
state can be programmable in itself. Such a state 
machine is often referred as a state chart, where each 
state has trigger, action and guard conditions. At the 
same time we may also utilize SDF MOC to model 
the architectural issues.  

IV. ONOC CUSTOMIZABLE PARAMETERS 
ONoC model support component customization. 

This customization has been provided in the form of a 
drop-down menu. Such facility eases the task of a 
design architect. He/she can now change the actual 
system model to understand the impact of various 
design parameters without the need for changing the 
actual design. Thus, it has potential to provide a more 
effective analysis of the result by investing less time 
as compared to the traditional ways of performance 
analysis. These customization parameters are 
discussed below: 

4.1 Buffer Size 

We can change the buffer size to any value. By 
changing the buffer size, we can understand its impact 
on latency, area and therefore the silicon cost. 

4.2 Priorities  

We provided three priority levels for data packets 
in our ONoC model: High priority, Mid priority and 
Low priority. High priority supports control signals 
such as Read (RD), Write (WR), Acknowledge 
(ACK), and interrupts. Therefore, high priority data is 
a short packet (single flit packet). Mid priority 
supports real-time traffic on the system, while Low 
priority supports non-real time block transfers of data 
packets. We have defined control signals as a high 
priority because the data must respond to a right 
control signal. Therefore, a control signal must reach 
its destination in time to manage the communication 
flow of the network. Equally important is to ensure 
the delivery of real-time data in real-time bounds. 
Therefore, we have assigned Mid Priority to real-time 
data. Rest of the data on the network belongs to low 

priority class of data traffic. Number of priority levels 
is a customizable parameter.  

4.3 Input and Output Buffer Scheduling 
Criteria  

Buffer forwards the data to the next block based 
on its scheduling criteria. We provided three 
scheduling criteria (also referred as service levels 
(SL)): First-Come-First-Serve (FCFS), Priority Based 
(PB), and Priority-Based-Round-Robin (PBRR).  

4.4 Scheduler Scheduling Criteria  

Scheduler also supports different scheduling 
criteria. Thus, in a network we can have a 
combination of scheduling algorithms. Scheduler 
supports FCFS, Round-Robin (RR), PB, and PBRR. 
A scheduler is connected with five Input Buffers and 
five Output Buffers. 

4.5 Routing Algorithm  

Routing algorithms is another important 
parameter. There are three different routing 
algorithms included in the model. These algorithms 
are: X-Direction First, Y-Direction First and XY-
Random. 

4.6 Packet Injection Rate 

Packet Injection Rate represents the number of 
flits per cycle injected into the network for 
transmission. We have defined it as a customizable 
parameter to test our ONoC model for varying load 
conditions. Injection rate is changed from 0.1 to 1.0 at 
equal increments of 0.1 to check the resultant network 
latency. An injection rate of 1.0 represents that a 
producer class outputs a flit every clock cycle. 
Similarly, a rate of 0.33 represents the injection of a 
flit in every three clock cycles.  

V. ONOC MODEL 
ONoC has been designed in an object oriented 

manner. In this section we discuss our ONoC model 
and its classes. 

5.1 Producer Class 

Producer comprises a resource and a resource 
network interface. Producer generates the required 
traffic pattern and packetizes the data into flits. A flit 
is the smallest unit of communication supported in 
ONoC. The customizable parameters for Producer are: 
(1) The distribution pattern of the data; (2) Amount of 
data generated as a function of time (throughput); (3) 
Priorities of the generated data - High, Mid or Low; 
and (4) The source and the destination addresses for 
the data (route information).  

We used three statistically generated traffic 
distribution patterns – uniform traffic with linear 
destination, random and application specific patterns. 
Producer outputs a flit when buffAvail is asserted by 
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Buffer. A flit is time-stamped at the time of its 
generation. The timestamp is used to determine the 
latency involved in delivering the flit. The source and 
destination address fields of the flit header are updated 
at this time. Flit header has fields for its priority, 
timestamp, x-direction of source address, y-direction 
of the source address, x-direction of the destination 
address, and the y-direction of the destination address. 
The priority of this flit is governed as per a statistical 
distribution block. For example, in case of a uniform 
distribution pattern, every third flit will be a high 
priority flit. Once the new flit has its timestamp, 
source and destination address and priority fields 
updated, it is then forwarded to the output through 
dataOut. Producer class has been implemented with 
SDF MOC as it is responsible for continuous data 
flow. 

5.2 Input Buffer Class 

Input Buffer stores the incoming flits, generates 
the proper handshaking signals to communicate with 
Scheduler and forwards the flits to a Router. A data 
forwarding path has been implemented based on a 
“request-grant” signaling approach (other NoC 
implementations refer to it as flow control logic). 

Incoming flits corresponding to all the priority levels 
(High, Mid and Low) are stored in a common buffer. 
Let buffSize represent all the available space in an 
Input Buffer. The buffAvail indicates whether there is 
space available in Input Buffer. The stored data flits 
are forwarded to Router based on their scheduling 
criteria. For example, in case of Priority Based 
scheduling, High priority flits are forwarded before 
the Mid or Low priority flits, etc. Table 1 shows the 
classification of flit types. 

TABLE I.  FLIT PRIORITY BIT COMBINATIONS 

 
Bit Combination Flit Types 

00 No Flit 
01 High Priority Flit 
10 Mid Priority Flit 
11 Low Priority Flit 
 

Figure 2 (a) and (b) show the internals of Input 
Buffer Class. (a) represents the input side of the Input 
Buffer implementation while (b) represents the output 
side of Input Buffer implementation. 

                                       

        
  (a)    (b)    (c) 

 
Figure 2.  Internals of Input Buffer Class 

 
Input buffer is virtually divided into three different 

buffers A, B and C (see Figures 2 (a) and (b)). We 
have provided flexibility in the size of these virtual 
buffers (the combined size is a fixed user defined 
parameter). Input side (Figure 2 (a)) is responsible for 
checking the available buffer space and allocates a 
memory space for an incoming flit. Output side 
(Figure 2 (b)) forwards a flit and releases the allocated 
memory. Figure 2 (C) combines Figures 2 (a) and (b). 

We have implemented a handshaking protocol for 
forwarding a flit. The availability of data flits in Input 
Buffer for further transmission is indicated by 
dataInBuff. If a grant comes in response to this 
request (nodeGrant), the flit stored in the buffer is 
forwarded to the corresponding Router. Table 2 shows 
the bit allocation of nodeGrant. 

TABLE II.  NODEGRANT BIT ALLOCATION 

 
Bit Combination Flit Types 

00 No Flit 
01 High Priority Flit 
10 Mid Priority Flit 
11 Low Priority Flit 
 
On receipt of nodeGrant, a data packet is forwarded 
by the output side of the input buffer through dataOut. 
Figure 2 (c) shows the complete implementation of 
input side and output side of input buffer class. Three 
virtual buffers as shown in Figures 2 (a) and (b) are 
represented as memories (M) in Figure 2 (C). A flit is 
not removed from Input Buffer until a confirmation 
(via confirm) is received from Scheduler (from the 
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output side of Figure 2 (C)). If confirm is not 
received, the data flit is not removed from Input 
Buffer; however, it will be queued for later 
forwarding. We provided three virtual channels per 
buffer. A VC controller inside input buffer updates 
these virtual channels. We implemented input buffer 
class with DE MOC. DE domain facilitates signaling 
protocol thus, an ideal choice for implementing 
handshaking protocols. 
 
5.3 Scheduler Class 

  

Scheduler handles the control part of the Router 
class. It schedules the incoming requests for data 

transmission to the next node, by checking for the 
availability of the output data path and by arbitrating 
the requests from various Input Buffers associated 
with it. The data and control part of a node have been 
separated (Router class handles the data part and 
Scheduler class handles the control signals) in order to 
manage concurrency issues and make the design more 
scalable and reusable. Figure 3 shows the MLD 
implementation of the Scheduler class. The Scheduler 
is connected to five instances of Input Buffer (one for 
each direction in the 2-D mesh network and a fifth 
buffer for the local Producer class connected through 
a NI) and, similarly, five instances of Output Buffer 
on the output side. 

 
 

 

 
Figure 3: MLD implementation of the Scheduler class 

 
 

Scheduler accepts the requests from an Input 
Buffer via dataInBuff (the input signal on the left side 
of Figure 3) and allocates the data path to by asserting 
nodeGrant (the output signal on the left side of Figure 
3). The data path allocation is based on the availability 
of an Output Buffer and the route. We have embedded 
multiple algorithms in scheduler class as discussed in 
previous section. Scheduler will select an input buffer 
from multiple input buffers requesting for 
transmission of data packet. Router informs Scheduler 

about the physical output path for flit transmission via 
outputPort. Availability of the data path is 
acknowledged by assertion of confirm. This 
interaction between Scheduler and Router is shown in 
Figure 4. Scheduler class is implemented in two 
different MOCs. The control part scheduler has been 
implemented with FSM. This FSM interacts with DE 
domain for proper handshaking with Input buffer and 
router on the input side and output buffer on the 
output side of scheduler. 
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Figure 4: Interaction between Scheduler and Router Classes 
 
5.4 Router Class  

Router (we refer it as Node in Figure 4) 
determines the output path and handles the actual data 
transfer on the implemented backbone. A dimension-
order routing protocol was implemented in the Router 
class for determining the output path. We have 
provided customization in routing algorithms as 
discussed in earlier section. Upon receipt of data, 
Router extracts the destination information and 
determines the physical output port for transmitting 
the data. This output port address is sent to Scheduler, 
which determines the availability of this port. Upon its 
availability, data flits are then forwarded to the 
corresponding Output Buffer for this port. 

5.5 Output Buffer Class  
Output Buffer accepts the incoming flits from 

Router and forwards these flits to the Input Buffer of 
the next node. It is implemented in the form of the 
two concurrently executing state machines. The 
received flits are stored in the Output Buffer memory. 
The input state machine accepts and stores the data 

flits while there is available memory in Output Buffer. 
Upon the request of Scheduler by reqBuffAvail, 
availability of buffer space in Output Buffer is 
signaled by buffAvail. The output state machine 
senses the request for transmitting data from Output 
Buffer of the next Router via outputBuffAvail of that 
Output Buffer and forwards the data flit, if that signal 
was asserted. 

5.6 Consumer Class  
Consumer comprises a computing resource and a 

network interface (NI). Consumer accepts data flits, 
strips off the header information, and forwards the 
remainder of the data to its internal computing 
resources. Similar to producer, consumer consumes 
data packets. Thus, we have implemented consumer in 
SDF domain 

VI. SIMULATION RESULTS 
We have simulation ONoC model with different 

injection rates (varying from 0.13 to 1.0), buffer sizes 
(1 through 5 and 10), scheduling criteria (PB, PBRR, 
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FCFS, RR). We have computed the results for High, 
Mid, and Low priority latency and NOC area.  

 
6.1. Latency Results 

The minimum latency for a single hop will be 6 
clock cycles due to synchronization signals 
(concurrency cost) among different components: 1st 
clock cycle for storing data flit into the Input Buffer 
(buffAvail); 2nd clock cycle for requesting data output 
to Scheduler (dataInBuff); 3rd clock cycle for 
receiving the grant signal from Scheduler 
(nodeGrant); 4th clock cycle for forwarding the data to 
Router (dataOut); 5th clock cycle for confirming the 
output path availability (reqBuffAvail); 6th clock cycle 
for forwarding the data packet to the output buffer 
(dataOut). Thus, each hop will introduce at least six 
clock cycles of latency. For simulation of ONOC, we 
injected 10,000 flits into the network. High priority 
flits are used for transmitting control signals such as 
MemRD (Memory Read), MemWR (Memory Write), 
IORD (Input/Output Read), IOWR (Input/Output 
Write), and interrupts among others, while Mid 
priority flits and Low priority flits are used for 

transmitting real-time data and non-real time block 
transfers, respectively. For network simulation, 
control signals were assumed to account for 10 % of 
the total data traffic flow, with real-time data and non-
real time data accounting for 20 % and 70 %, 
respectively. However, this traffic load can be altered 
as it being a customizable parameter. 

Figures 5 (a), (b), and (c) show High, Mid, and 
Low priority data latency for two hops against traffic 
injection rate with FCFS scheduling and dimension 
order routing respectively. These plots have been 
drawn for different buffer sizes. Thus, there are three 
parameters: Buffer Size, Injection Rate, and Latency. 
In FCFS algorithm, data latency results for all three 
priorities are almost the same. It is because FCFS 
does not prioritize the data packets. Thus, all the 
priorities suffer almost the same latency. As the buffer 
size increases from 1 to 10, the data latency also 
increases from 14 to 107. With larger buffer size, a 
data packet has to wait in the buffer for a longer time. 
Thus, we have higher data latency with larger buffer 
size.

 

    
    Figure 5a       Figure 5b 
 
             

 
           Figure 5c                   Figure 6a 
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           Figure 6b          Figure 6c 
 

Figure 5 (a), (b), and (c): High, Mid, and Low Priority Data Latency Vs Injection Rate for Different Buffer Sizes 
with FCFS Scheduling Respectively 

 

Figure 6 (a), (b), and (c): High, Mid, and Low Priority Data Latency Vs Injection Rate for Different Buffer Sizes 
with PBRR Scheduling Respectively 

 
Figures 6 (a), (b), and (c) show High, Mid, and 

Low priority data latency for two hops against traffic 
injection rate with PBRR scheduling and dimension 
order routing respectively. In case of PBRR 
scheduling criteria, High priority data packet must 
secure the lowest latency while the Low priority must 
have the highest latency. From Figure 6 (a), (b) and 
(c), data packet latency for the high priority varies 
from 8 to 30 clock cycles, mid priority varies from 15 
to 36 clock cycles and low priority data varies from 
15 to 140 clock cycles. The main advantage of such 
an algorithm is its capability to serve all the five input 
buffers connected with the scheduler at the same time. 
Each Input Buffer receives equal scheduler response. 
The latency results of this algorithm are very similar 
to RR scheduling due to its nature of rotating and 

serving each Input Buffer in a RR fashion. However, 
it provides better results when more than three Input 
Buffers are producing data at the same time. In such 
scenario, a RR scheduling will not be able to deliver 
the High priority data in time. However, PBRR will 
work effectively under such a condition. 

6.2 Comparison of Different Scheduling Criteria 
In a real-time embedded system, it is must that a 

system responds to the real-time requirements. Our 
underlying architecture must make sure to deliver 
real-time data and required control signals for this 
data processing in timely manner. Consequently, we 
must select scheduling criteria that can perform this 
task. Figure 7 shows High Priority data latency result 
against buffer sizes for different scheduling criteria. 

 
 

       
Figure 7: High Priority Data Latency Vs Buffer Size   Figure 8: Low priority Data Latency For PB and  
 For Different Scheduling Criteria              PBRR Scheduling 
 

In Figure 7, it can be seen that FCFS and RR may 
not always deliver High priority data packets in real-
time bounds. Thus, we should use either PBRR or PB 
scheduling criteria for our NOC architecture. We used 

Low priority data latency results for finally choosing 
the scheduling criteria between PBRR and PB 
scheduling. Figure 8 shows Low priority data latency 
against buffer sizes for PBRR and PB scheduling 
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criteria. PB scheduling delivers the High priority data 
and Mid priority data in timely manner. However, it 
has higher latency for low priority data. Thus, we 
recommend using PBRR as the scheduling criteria for 
NOC architecture. 

6.3 Area Results for NOC Parameters 

We implemented all the NoC classes with Field 
Programmable Gate Arrays (FPGA) to extract the 
total NoC area and area information of each 
component. Figure 9 shows the area result for a 32-bit 
and 64-bit Input Buffer and Output Buffer 
implementations. These area results are not directly 
proportional to the buffer size i.e. a linear relationship 
between buffer size and number of gates does not 
exist. This is mainly because of two reasons: (1) Our 
Input Buffers and Output Buffers have scheduling 
capability, along with the functions of storing and 
forwarding the data packets. This scheduling circuit 

does not depend upon the buffer size. Therefore, 
buffer of a size two will not have double the number 
of gates as compared to a buffer of size one. (2) The 
internal architecture of an FPGA is divided into 
several Configurable Logic Blocks (CLBs) along with 
other components such as Digital Clock Manager 
(DCM) and block Random Access Memory (BRAM). 
A CLB is further divided into four slices. Architecture 
of each CLB is identical. The number of gates is 
calculated by multiplying the number of occupied 
slices with the total number of gates in a single slice. 
Thus, the equivalent FPGA implementation will count 
the total number of gates for a slice even if it is not 
fully occupied. Similarly, if we use a part of BRAM 
for storing the data packet/flits, then we account for 
total number of gates for that BRAM. Consequently, 
we will not see a linear relationship between the 
buffer size and the number of gates. 

   
 

Figure 9: Number of Gates for ONoC Buffer  Figure 10: Number of Gates for ONoC Classes 
 

Figure 10 shows area result for different 
scheduling criteria (RR, PB, FCFS, and PBRR), and 
Router. Router handles the actual data transfer, thus 
has dedicated lines for sending and receiving data bits. 
Thus, Router takes more number of gates than 
Scheduler. 

6.4. Impact of Buffer Size on NOC Area 

There are eighty input buffer and eighty output 
buffers in a 4×4 mesh based NoC. Thus, buffer size is 
a key parameter for deciding the number of gates used 
in NoC architecture. Figure 11 shows the High, Mid 
and Low data latencies against different 64-bit buffer 
sizes for PBRR scheduling. We also provided the total 

NOC area (gate count) for different buffer sizes with 
PBRR scheduling criteria (see Figure 12). Buffer size 
of 10 produces a high value of Low priority data 
latency (82.4 clock cycles). Thus, we do not 
recommend using a buffer size of 10. A buffer size of 
1 and 2 will have lower values of High priority data 
latency, however, they may not provide sufficient 
amount of buffering needed in a network. High and 
Mid priority data latency for buffer sizes of 3, 4, and 
5, is almost similar. A buffer size of more that 5 will 
have more number of gates; consequently the leakage 
current will also increase. Therefore, we recommend 
using buffer sizes of 3, 4, or 5 for NOC architecture.

 
 



Dr.A.Arul Lawrence selvakumar /International Journal of Engineering and Technology Vol.1(2), 2009, 50-62 

61 

    
          

         Figure 11: Latency Vs NoC Area with PBRR                Figure 12: Latency Vs Injection Rate for Maximum Load  
                Scheduling and Different Buffer Sizes            Scheduling and Buffer Size of 5 Condition with PBRR     

 
6.5. NoC Simulation with Maximum Load 

Condition 

We further simulated NOC architecture with 
maximum load. We referred to maximum load 
condition when all the sixteen nodes in a 4×4 NOC 
are producing and consuming data packets. We have 
simulated such network load for calculating High 
priority, Mid priority, and Low priority data latencies 
with buffer size of 5 and PBRR scheduling (our one 
of the recommended NOC configuration). Even in 
case of the maximum load condition, which are rare 
the High Priority data latency is about 55 clock 
cycles, Mid priority data latency is about 63 clock 
cycles, and Low priority data latency is in the range of 
200-250 clock cycles. Therefore, we recommend that 
an architect must over-dimension NOC architecture if 
there is a possibility of all the NOC nodes to consume 
and produce data packets simultaneously. Such over-
dimensioning of the network will reduce the data 
latency for embedded systems.   

VII. 5.5. CONCLUSION 
We have developed a methodology to realistically 

model and optimally design the communication 
backbone of a NoC. The model is built with reusable 
and customizable building blocks, which are abstract 
enough to facilitate quick analysis. The modeling 
environment chosen supports multiple models of 
computation, which helps with both fast model 
building and simulation. As an example of the 
model’s use, we chose three priority levels to show 
that the communication backbone can be designed to 
optimally meet different latency requirements even 
when the traffic patterns are markedly different 

We studied various simulation platforms such as 
Ptolemy, Modeling Environment for Software 
hardware (MESH), OPNET and MLD, to identify the 
right simulation environment. We determined that 
MLD was suitable for our work because of its support 
for multiple MOCs (Models of Computation). We 
have modeled our classes and their instances using 

three different domains: finite state machine (FSM), 
synchronous data flow (SDF) and discrete events 
(DE). We performed the top level simulation of the 
overall model in the DE domain; this executes the 
simulation substantially faster than otherwise. 

VIII. REFERENCES 
[1] G. Desoli, E. Filippi, “An outlook on the evolution of mobile 

terminals: from monolithic to modular multi-radio, multi-
application platforms”, IEEE magazine on Circuits and 
Systems, vol. 6, No. 2, pp. 17-29, 2006 

[2] W.C. Rhines, “Sociology of design and EDA”, IEEE 
Transaction of Design and Test, vol. 23, issue 4, pp. 304-310, 
April 2006. 

[3] E. A. Lee, Yuhing Xiong, “System level types for 
component-based design, Workshop on Embedded Software, 
California, October 2001 

[4] Y. Xiong and E. A. Lee, “An extensible type system for 
component-based design”, International Conference on Tools 
and Algorithms for the Construction and Analysis of Systems, 
Berlin, Germany, April 2000. 

[5] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. 
Stergiou, L. Benini, and G. De Micheli, “NoC synthesis flow 
for customized domain specific multiprocessor SoC”, IEEE 
Trans. on Parallel and Distributed Systems, vol. 16, no. 2, 
pp. 113-129, February 2005. 

[6] S. Kumar, A. Jantsch, J-P. Soininen, M. Forsell, M. Millberg, 
J. Oberg, K. Tiensyrja, and A. Hemani, “A Network on Chip 
architecture and design methodology”, In IEEE Computer 
Society Annual symposium on VLSI, pp. 117-124, 2002 

[7] A. Agarwal, R. Shankar, “Modeling concurrency on NoC 
architecture with symbolic language: FSP”, IEEE 
International Conference on Symbolic Methods and 
Applications to Circuit Design, Oct 2006, (To Appear in Oct) 

[8] J. Burch, R. Passerone, A.L. Sandivanni-Vincentelli, 
“Overcoming heterophobia: modeling concurrency in 
heterogeneous systems”, IEEE International Conference on 
Application of Concurrency to System Design, pp. 13-32, 
June 2001 

[9] E. A. Lee, A. Sangiovanni-Vincentelli, “Comparing models 
of computation”, IEEE/ACM International Conference on 
Computer-Aided Design, ICCAD-96, pp. 234-241, 
November 1996.  

[10] A. Jantsch, I. Sander, “Models of computation and languages 
for embedded system design”, IEEE Proceedings on 
Computers and Digital Techniques, vol. 152, Issue 2, pp. 
114-129, March 2005 



Dr.A.Arul Lawrence selvakumar /International Journal of Engineering and Technology Vol.1(2), 2009, 50-62 

62 

[11] L. Benini and G. De Micheli. Networks on chip: a new SOC 
paradigm, IEEE Computer, vol. 35 No. 1, January 2002, 70-
78 

[12] J. A. Meine and W. Wayne, MultiprocessorSystem-On-Chips. 
Morgan Kaufmann Publisher, 2005. 

[13] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Öberg, M. 
Millberg, and D. Lindqvist, “Network on Chip: an 
architecture for billion transistor era”, Proc. of IEEE 
NorChip Conference, pp. 8-12, November 2000. 

[14] A. Jantsch and H. Tenhunen. Networks on Chip, Kluwer 
Academic Publisher, 2003. 

[15] W. J. Dally and B. Towles, “Route packets, not wires: on-
chip interconnection networks”, IEEE International 
Conference on Design and Automation, pp. 684-689, June 
2001. 

[16] A. Agarwal, R. Shankar, “A Layered Architecture for NOC 
Design methodology”, IASTED International Conference on 
parallel and Distributed Computing and Systems, pp. 659-
666, 2005  

[17] D. Kim, M. Kim, and G.E. Sobelman, “CDMA based 
network-on-chip architecture”, IEEE Asia-Pasific Conference 
on Circuits and Systems, vol. 1, pp. 137-140, December 
2004. 

[18] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and 
C.A. Zeferino, “SPIN: a scalable, packet switched, on-chip 
micro-network”, IEEE Conference and Exhibition on Design, 
Automation and Test in Europe, pp. 70-73, 2003. 

[19] P. Pratim Pande, C. Grecu, M. Jones, A. Ivanov, and R. 
Saleh, “Performance evaluation and design trade-offs for 
network-on-chip interconnect architectures”, IEEE 
Transactions on Computers, vol. 54, no. 8, pp. 1025-1040, 
Aug. 2005. 

[20] P. Bhojwani, R. Mahapatra, J. K. Eun, and T. Chen, “A 
heuristic for peak power constrained design of network-on-
chip (NoC) based multimode systems”, IEEE International 
Conference on VLSI Design, pp. 124-129, 2005. 

[21] P. Bhojwani, R. Mahapatra, “Interfacing Cores With on-chip 
packet-switched networks”, In IEEE Proceedings of the 16th 
International Conference on VLSI Design, pp.  382–387, 
2003. 

[22] D. Bertozzi and L. Benini, “Xpipes: A network-on-chip 
architecture for gigascale systems-on-chip”, IEEE Circuits 
and Systems Magazine, vol. 4, no. pp. 18-31, 2004. 

[23] E. Rijpkema, K. Goossens, A. Radulescu, J. Dielissen, J. van 
Meerbergen, P. Wielage, E. Waterlander, “Trade-offs in 
the design of a router with both guaranteed and best-effort 
services for networks on chip”, IEEE Proceeding on 
Computers and Digital Techniques, vol. 150, Issue 5, 22, pp. 
294-302, 2003 

[24] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, 
C.A. Zeferino, “SPIN: a scalable, packet switched, on-chip 
micro-network, IEEE Conference and exhibition on, Design, 
Automation and Test in Europe Conference and Exhibition, 
pp. 70-73, 2003 

[25] I. Saastamoinen, M. Alho, J. Nurmi, “Buffer 
implementation for Proteo network-on-chip”, 
International IEEE Proceeding on Circuits and 
Systems, vol. 2 pp. 113-116, 2003 

[26] A. Siebenborn, O. Bringmann, and W. Rosenstiel, 
“Communication analysis for network-on-chip design”, IEEE 
International Conference on Parallel Computing in 
Electrical Engineering, pp. 315-320, September 2004. 

[27] J. Hu and R. Marculescu, “Energy-aware Communication 
and task scheduling for network-on-chip architectures under 
real-time constraints”, IEEE Conference and Exhibition on 
Design, Automation and Test in Europe, vol. 1, pp. 234-239, 
February 2004. 

[28]  J. Madsen, S. Mahadevan, K. Virk, and M. Gonzalez, 
“Network-on-chip modeling for system-level multiprocessor 
simulation”, IEEE 14th Conference on Real-Time Systems, 
pp. 265- 274, 2003. 

[29] P.T. Wolkotte, G.J.M. Smit, G.K. Rauwerda, and L.T. Smit, 
“An Energy-Efficient Reconfigurable Circuit-Switched 
Network-on-Chip”, 19th IEEE International Conference on 
Parallel and Distributed Processing Symposium, pp. 155-
163, 2005. 

[30] T. Bjerregaard and J. Sparso, “Virtual channel designs for 
guaranteeing bandwidth in asynchronous network-on-chip”, 
IEEE Proceedings on Norchip Conference, pp. 269 – 272, 
November 2004. 

[31] A. Barger, D. Goren, and A. Kolodny, “Design and modeling 
of network on chip interconnects using transmission lines”, 
11th IEEE International Conference on Electronics, Circuits 
and Systems, pp. 403-406, December 2004. 

[32] A. Morgenshtein, I. Cidon, A. Kolodny, and R. Ginosar, 
“Comparative analysis of serial vs parallel links in NoC”, 
IEEE International Proceedings on System-on-Chip, pp. 185-
188, November 2004. 

[33] D. Bertozzi, L. Benini, and G. De Micheli, “Error control 
schemes for on-chip communication links: the energy-
reliability tradeoff”, IEEE Transactions on Computer- Aided 
Design of Integrated Circuits and Systems, vol. 24, no. 6, pp. 
818-831, June 2005 .  

[34] S. J. Lee, K. Lee, S.J. Song, and H.J. Yoo, “Packet-switched 
on-chip interconnection network for system-on-chip 
applications”, IEEE Transactions on Circuits and Systems II, 
vol. 52, no. 6, pp. 308-312, June 2005

 
 


