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Abstract—A model is created for the number of 
integrated circuits that are good from each wafer on 
which they are fabricated. The goal is to separate the 
random or common cause loss from the systematic or 
special loss. The random loss from this type of process is 
modeled so that false alarms indicating systematic loss are 
less likely to occur and so that the structure of the 
systematic loss can be determined. 
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I. INTRODUCTION 
  
The fabrication of integrated circuits is a large and important 
industry. Hundreds of integrated circuits are manufactured at 
the same time on wafers, which are created in lots. Each 
wafer is more-or-less circular with a diameter of a few 
inches. The manufacturing process can take many weeks and 
is quite complicated. Each circuit must pass many tests 
before it is sold. There is a considerable literature on 
modeling and minimizing the loss or number of bad die. See 
[1], [2], [3], [4], and [5] for reviews.  
 Usually, the integrated circuits are called die when 
they are on a wafer, chips when they are separated from the 
wafer, and integrated circuits when installed for use. We 
prefer the word "die," which we also use for the plural. 
Optical and electrical measurements are used to test or screen 
the die. Among the reasons to discard a die are wrong 
resistance, an open circuit, a missing conductor, and being 
physically too large or too small in some dimension. 
 Yield is the fraction or percent of the die on a wafer 
that passes all tests. Since all wafers in our simulation contain 
1000 die, we use the number that pass all tests as the yield. 
Yield can refer to the fraction or the percent of useable die in 
a whole process or in a lot as well. Yield can be affected by 
many events.  
 We are principally concerned with random loss of 
yield. Random loss is characterized by the presence or 
absence of any particular defect in each die being 
independent of the condition or location of the other die on a 
wafer. The random loss with respect to each attribute is 
uncorrelated between die, and the attributes are uncorrelated 
within the die. Random loss is associated with common 
causes, such as dust particles in cleanrooms and the 
manufacturing equipments' imprecision in general. Patterns 
in which bad die are grouped along the edge, say, of the 

wafer produce systematic or special effects. Sometimes, 
systematic loss is caused by equipment failures. Our goal is 
to model the variability of the lots, wafers, and die, so that 
random loss can be identified. Then, systematic loss can be 
revealed as the residual loss after accounting for the random 
loss. 
 There are many differing models of the distribution 
of defects on a wafer. For random effects, a widely used 
family of models is based on compound or mixed models in 
which a gamma distribution is used for the density of defects 
and the yield is an average or integral over that distribution 
[6], [7], [8]. This produces a generalized negative binomial 
distribution [9, p. 191] with a parameter, usually designated 
a, that measures the degree of clustering. There are other 
ways to reach the same model [10]. We take a > 10, which is 
the Poisson model [6]. This model has many mathematical 
advantages, in particular it has the additive property that the 
sum of Poisson random variables is a Poisson random 
variable [9, p. 146]. Since Poisson random variables and 
binomial random variables converge in distribution under 
certain conditions, such as large sample sizes [9, pp. 217–
219], and since we assume normal distributions for the 
variables or attributes that are measured, our analysis is based 
on binomial and normal distributions. Alternatively, the 
binomial model can be developed from first principals [3, p. 
31], [11, p. 1067], [12]. 
 One tactic is to fit the yield to a prescribed 
distribution [2], [6], [11], [13], which can be somewhat 
limiting for this complex process. Another tactic for 
measuring the random component of yield is called 
windowing in which neighboring die are grouped as if they 
were one die and are declared good if all die in the group are 
good [3, p. 27], [10], [13, pp. 5–6], [14]. Usually these super 
die are created with two, four, and eight die and sometimes 
more die under the assumption that random effects are not 
dependent on area, that is, they are scalable as a Poisson 
random variable is. This can be an effective method, but it is 
an art as well as a science; for example, if a grouping 
contains many die, it will almost certainly be bad and too few 
groupings will not give significant results. 
 Usually, the die's yield is represented by the product 
of a yield limited by random loss and a yield limited by 
systematic loss [3], [13], [15]. The random and the systematic 
factors are themselves products. Since each die is affected by 
various independent effects, yields are determined by 
products. Our goal is to model the yield from random loss 

ISSN : 0975-4024 402



Michael E. Long et. al. / International Journal of Engineering and Technology Vol.2 (6), 2010, 402-405 

alone so that the systematic yield can be estimated utilizing 
the product. 
 We select the variability among the lots and among 
the wafers that are in the lots and consider various testing 
criteria for the die. The parameters of the output are 
examined with the shape of the yield histogram being of 
particular interest. The variability of the lots and wafers is 
modeled with normal distributions. Each test produces a 
binomial random variable with the probability of each die 
passing the test being computable from the normal 
distributions. 
 Fig. 1 is the histogram, called a yield curve, of the 
yields for 1500 wafers. The scaling has been removed for 
reasons of confidentiality for the company, whom we may 
only thank anonymously for these data and other data that we 
were allowed to examine and analyze. The histogram does 
not represent a binomial distribution, and the long left tail 
might be construed to indicate systematic loss. However, in 
Sections II and III we create similarly left-skewed yield 
curves from normally distributed variables that represent 
measurements on die from a manufacturing process. Yield 
curves similar to the one in Fig. 1 can be found in [3, p. 30], 
[4, pp. 70, 85], [11, p. 1068], [13, p. 3], [15, p. 134], and [16, 
p. 102]. In some of those, the left tail has sufficient structure 
to indicate that nonrandom effects may be in play, but others 
display simple left tails like the one in Fig. 1. 

 
Fig. 1. A yield curve of actual data showing the number of good die per 
wafer for 1500 wafers. Higher yields are to the right. Scaling has been 
removed for reasons of confidentiality for the manufacturing company. 

 
2. THE MODEL 
 For specificity and as an example, in this section we 
describe the manner in which the simulated data were 
generated for Fig. 2, 3, and 4, which are presented in Section 
III. Consider normally distributed random variables, which 
are the attributes of a die. For this model there are three 
attributes X1, X2, and X3 that are measured and used for 
screening each die for acceptance or rejection. In practice, 

there are many more attributes. There is an acceptable region 
for each random variable or attribute. The requirements for 
attributes X1, X2, and X3 are X1 ≥ 1, 7 ≤ X2 ≤ 11, and X3 ≤ 33. 
The main features of the model's output that is described in 
Section III can be created even for only one random variable 
or attribute. The one-sided left or right and two-sided criteria 
affect the output in similar ways. 
 There are ten lots, each containing 20 wafers, and 
each wafer has 1000 die. For each of the three attributes or 
random variables, consider process normal distributions with 
means m1 = 3, m2 = 9, and m3 = 27 and standard deviations s1 
= 1, s2 = 1, and s3 = 3, respectively.  
 For attribute X1, randomly select ten numbers, 
written m1i, i = 1, 2, , 10, from the adjusted process normal 
distribution with mean m1 = 3 and standard deviation sL1 = 
aL1s1 = aL1(1) = aL1. The parameter aL1 is chosen for each run 
and is between 0.0 and 0.9. These ten m1i are the means for 
X1 of the ten lots, where each lot has the standard deviation 
sW1 = aW1s1 = aW1(1) = aW1. The parameter aW1 is chosen 
separately from aL1, is also between 0.0 and 0.9, and 
represents the wafer-to-wafer variability within each lot. 
From each of the ten lots' distributions with mean m1i and 
standard deviation sW1, randomly select 20 numbers, which 
are the means m1ij, j = 1, 2, , 20, for the random variable X1 
for the wafers, where each wafer's X1 has standard deviation 

s1 = 1. Experience has shown that lot-to-
lot variability is less than wafer-to-wafer 
variability, which is less than within 
wafer variability, so the parameters are 
selected to reflect that in Section III. A 
simple random sample of 1000 
measurements of X1 is taken for each 
wafer. For wafer j of lot i, the 
measurements are x1ijk, k = 1, 2, , 1000, 
from the normal distribution with mean 
m1ij and standard deviation s1 = 1. 
 This model is a 2-stage nested or 
hierarchical design [17, pp. 571–582], 
[18, pp. 525–536]. The two stages are the 
lots and the wafers. There are 1000 
replicates, the measurements on each die. 
It is a balanced design because each run 
has the same number of lots, each lot has 

the same number of wafers, and each wafer has the same 
number of die, that is, measurements or replicates. It is a 
random effects, not fixed effects, model since there are no 
constraints that a fixed effects model would have. An 
example of a constraint is the sum of the ten lots' means has a 
certain value. No clustering or correlation among the effects 
is considered, that is, each of the 1000 die on each wafer has 
the same probability of passing a test. 
 For attribute X2, randomly select ten numbers, 
written m2i, from the adjusted process normal distribution 
with mean m2 = 9 and standard deviation sL2 = aL2s2 = aL2(1) 
= aL2. These are the means for X2 of the ten lots, where each 
has the standard deviation sW2 = aW2s2 = aW2(1) = aW2. The 
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parameters aL2 and aW2 are selected from the interval (0.0, 
0.9), independently of each other and independently of aL1 
and aW1. From each of the ten lots' distributions of m2i, 
randomly select 20 numbers, which are the means m2ij of X2 
for the wafers, where each wafer's X2 has standard deviation 
s2 = 1. From each wafer, randomly select 1000 numbers x2ijk, 
which are the realizations of the attribute X2 on the die. For 
attribute X3, repeat the same process, using m3 = 27, s3 = 3, 
and independently selected aL3 and aW3. There is great 
flexibility in this model, since there are many parameters.  
 For each of the 10201000 = 200,000 die there are 
three measurements, (x1ijk, x2ijk, x3ijk), where i is the lot 
number, j is the wafer number, and k is the die number. 
 The goal of [17, pp. 571–582] and [18, pp. 525–536] 
is to use the method of analysis of variance to test for 
differences in the means in the lots and in the wafers in a 
nested design. However, in this application there are 
screening or testing steps, which pass or do not pass each die. 
Each wafer’s yield is the number of the 1000 die that pass all 
tests, three in this study. There are 1020 = 200 yields for 
each run. Our goal is to examine the structure of those 200 
numbers. 
3. THE MODEL'S OUTPUT 

 For simplicity, to produce the outputs in Fig. 2, 3, 
and 4, take the lot-to-lot multipliers to be equal and designate 
aL = aL1 = aL2 = aL3, and take the wafer-to-wafer multipliers to 
be equal and designate aW = aW1 = aW2 = aW3. Similar outputs 
are found with varying and unequal values of the parameters.  
 Although random effects are usually considered to 
be normally distributed [5, p. 49], the output from this model 
is not normal or binomial and, indeed, actual manufacturing 
process' outputs can be non-normal or non-binomial as Fig. 1 
shows.  Fig. 2, 3, and 4 illustrate sample yield curves, which 
are typical outputs. For Fig. 2, aL = 0.1 and aW = 0.3; for Fig. 
3, aL = 0.2 and aW = 0.6 ; and for Fig. 4, aL = 0.3 and aW = 
0.9. It should be emphasized that the parameters aL and aW 
give relative sizes of the lot-to-lot and wafer-to-wafer 
variability with respect to the within wafer variability. The 
skew for the data in Fig. 2, 3, and 4 are –0.687, –0.765, and –
0.596, respectively. The kurtosis for the data in Fig. 2, 3, and 
4 are 0.416, 0.052, and –0.431, respectively. The normal 
probability plots show visually that we would reject the three 
hypotheses that the data sets come from normal populations. 
For the Anderson-Darling test of normality, the P-value is 
less than 0.005 for each data set, indicating non-normality. 
Fig. 2, 3, and 4 show the progression to lower yielding wafers 
as the lot-to-lot and wafer-to-wafer variability increases. 

 
 
Fig. 2. A yield curve of simulated data (on the left) showing the number of good die per wafer for lot-to-lot standard deviation of 10% of the within wafer standard 
deviation and wafer-to-wafer standard deviation of 30% of the within wafer standard deviation and a normal probability plot (on the right) of the same data. 

 

 
Fig. 3. A yield curve of simulated data showing the number of good die per wafer for lot-to-lot standard deviation of 20% of the within wafer standard deviation 
and wafer-to-wafer standard deviation of 60% of the within wafer standard deviation and a normal probability plot of the same data. 
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Fig. 4. A yield curve of simulated data showing the number of good die per wafer for lot-to-lot standard deviation of 30% of the within wafer standard deviation 
and wafer-to-wafer standard deviation of 90% of the within wafer standard deviation and a normal probability plot of the same data. 

4. DISCUSSION AND RECOMMENDATION 
 It is difficult to completely separate with certainty 
random and systematic loss [3, p. 13]. The skewed 
distributions of the yields in Fig. 2, 3, and 4 are a cautionary 
note on assuming that the lower tail of a yield curve 
contains yields of die subjected to systematic loss. If the tail 
has some structure such as a large minor mode or if there is 
a history of yield curves with known random and systematic 
loss patterns, a reasonable hypothesis might be that the 
systematic losses are responsible for some of the lower tail 
[3], [4], [13, p. 3], [15, p. 134]. 
 There are almost always some systematic effects, 
such as edge effects that arise from the geometry of the 
process. Those regions of the wafer might be treated 
separately, since they have well known and distinct 
problems. 
 We have treated the decomposition into random 
and systematic loss as a quality control problem in which 
the random loss is the baseline. We have investigated this 
baseline in order to make it less likely that false alarms will 
be created by yield curves with appearances like those in 
Figures 1 to 4 and by their accompanying statistics such as 
skewness.  
 A yield curve alone can supply only limited 
information. However, yield curves are commonly used and 
can be helpful for obtaining some knowledge about the 
process. As we have shown, practitioners should not expect 
the baseline yield to be symmetric but can model it as we 
have done in the simulation, using their own information 
about their processes. 
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