
Er.Rajiv kumar / International Journal of Engineering and Technology Vol.2 (6), 2010, 472-476

An Experimental Analysis of Explorative and
Exploited Operators of Genetic Algorithm for

Operating system Process Scheduling Problem.

Rajiv Kumar 1
*1Computer Science & Engg. PhD. Scholar

Singhania University Jhunjhunu, Rajasthan, INDIA
 rajiv_kumar_gill1@yahoo.co.in

Abstract— Many Research have be done for Process scheduling
Problem. Most of the time parameters of the Scheduling
problem have changed but the problem remain same as to find
out the optimal schedule which can optimize the problem under
consideration. Implementation of genetic algorithm for operating
system process scheduling is a new idea . Genetic Algorithm is a
robust technique for solve process scheduling and optimization
problem. The performance of any genetic algorithm is depend
on the operators used for the GA Simulation. In this paper we
will analyse the performance of modified cross over genetic
algorithm for operating system process scheduling problem. We
take two operator of GA i.e. explorative operator and exploited
operator. The performance of the genetic algorithm is greatly
depends upon these two operator. As the probability of
explorative and exploited operator is changed the convergence of
Genetic algorithm is also changed.

Keywords: Genetic algorithm , NP-hard , Operating system,
 Exploited, Explorative, Scheduling.

1.Introduction

 Process Scheduling is concern with allocation of
hardware to the ready process. The scheduling problem is
consider as NP-hard. There are many techniques which have
been developed to handle the scheduling problem. But no is
the best. The implementation of genetic algorithm for
operating system is a new idea[1]. Over many years, most of
the researchers thought that optimal scheduling is very
difficult task to achieve. With the growing interest in Genetic
Algorithms (GAs) and the GA is another promising global
optimization technique[3] be used for operating process
scheduling problem. The modified cross over genetic
algorithm is first proposed by Davis[2] and apply this
algorithm to operating system process scheduling problem by
rajiv et al[3]. Genetic algorithms(Gas) are adaptive methods
which may be used to solve search and optimization problems.
Genetic algorithms (GAs) were first proposed by the John
Holland[4] in the 1960s
 This Genetic algorithm have been applied to many
scientific and engineering problems[5][6][7]. The
performance of the genetic algorithm is limited by some
problem, typically premature convergence. This happens
simply because of the accumulation of stochastic errors. If by

chance, a gene becomes predominant in the population, then it
just as likely to become more predominant in the next
generation as it is to become less he predominant. If an
increase in predominance is sustained over several successive
generations and population is finite, then a gene can be spread
to all members of the population. Once gene has converged in
this way, it is fixed then crossover cannot introduce new gene
values. The crossover operator and mutation operator is
consider the basic operator of GA . The cross over operator is
consider as explorative operator and mutation operator is
consider as exploited operator. The cross over operator
diversify the population and mutation operator exploit the new
result . when the population is premature converge then
mutation exploit the population and reduce the premature
convergence situation and hence the searching power of
genetic algorithm.

1.2 The Paper Description

The major part of this paper, contained in section 2, will

explain working of genetic algorithm and their application in
process scheduling problem. The GA is robust techniques and
it has no. of operators which have their own properties .The
parameter setting in the genetic algorithm is concerned with
the setting of applicable static values of the operators used. Ie
crossover probability , inversion rate , population size etc.
Accessible introduction can be found in the books by Davis [8]
and Goldberg[9] .Section 3 describe the proposed structure of
genetic algorithm. Section 4 explain the experimental setup for
analysis and Section 5 shows the experimental results of the
problem under consideration and section 6 is conclusion .

2. Introduction of Genetic Algorithm

2.1 overview

 The evaluation function, or objective function, provides a

measure of performance with respect to a particular set of
parameters. The fitness function transforms that measure of
performance into an allocation of reproductive opportunities.
The evaluation of a string representing a set of parameters is
independent of the evaluation of any other string. The fitness
of that string, however, is always defined with respect to other
members of the current population. In the genetic algorithm,

ISSN : 0975-4024 472

Er.Rajiv kumar / International Journal of Engineering and Technology Vol.2 (6), 2010, 472-476

fitness is defined by: fi /fA where fi is the evaluation
associated with string i and fA is the average evaluation of all
the strings in the population. Fitness can also be assigned based
on a string's rank in the population or by sampling methods,
such as tournament selection. The execution of the genetic
algorithm is a two-stage process. It starts with the current
population. Selection is applied to the current population to
create an intermediate population. Then recombination and
mutation are applied to the intermediate population to create
the next population. The process of going from the current
population to the next population constitutes one generation in
the execution of a genetic algorithm. In the first generation the
current population is also the initial population. After
calculating fi /fA for all the strings in the current population,
selection is carried out. The probability that strings in the
current population are copied (i.e. duplicated) and placed in the
intermediate generation is in proportion to their fitness.

2.2 Coding

 Before a GA can be run, a suitable coding (or

representation) for the problem must be devised. We also
require a fitness function, which assigns a figure of merit to
each coded solution. During the run, parents must be selected
for reproduction, and recombined to generate offspring. It is
assumed that a potential solution to a problem may be
represented as a set of parameters (for example, the parameters
that optimize a neural network). These parameters (known as
genes) are joined together to form a string of values (often
referred to as a chromosome. For example, if our problem is to
maximize a function of three variables, F(x; y; z), we might
represent each variable by a 10-bit binary number (suitably
scaled). Our chromosome would therefore contain three genes,
and consist of 30 binary digits. The set of parameters
represented by a particular chromosome is referred to as a
genotype. The genotype contains the information required to
construct an organism which is referred to as the phenotype.
For example, in a bridge design task, the set of parameters
specifying a particular design is the genotype, while the
finished construction is the phenotype.

 The fitness of an individual depends on the

performance of the phenotype. This can be inferred from the
genotype, i.e. it can be computed from the chromosome, using
the fitness function. Assuming the interaction between
parameters is nonlinear the size of the search space is related to
the number of bits used in the problem encoding. For a bit
string encoding of length L; the size of the search space is 2L

and forms a hypercube. The genetic algorithm samples the
corners of this L-dimensional hypercube. Generally, most test
functions are at least 30 bits in length; anything much smaller
represents a space which can be enumerated. Obviously, the
expression 2L grows exponentially. As long as the number of
"good solutions" to a problem are sparse with respect to the
size of the search space, then random search or search by
enumeration of a large search space is not a practical form of
problem solving. On the other hand, any search other than
random search imposes some bias in terms of how it looks for
better solutions and where it looks in the search space. A
genetic algorithm belongs to the class of methods known as

"weak methods" because it makes relatively few assumptions
about the problem that is being solved. Genetic algorithms are
often described as a global search method that does not use
gradient information. Thus, no differentiable functions as well
as functions with multiple local optima represent classes of
problems to which genetic algorithms might be applied.
Genetic algorithms, as a weak method, are robust but very
general.

2.3 Fitness Evolution

 A fitness evolution function must be devised for each

problem to be solved. Given a particular chromosome, the
fitness function returns a single numerical "fitness," or "figure
of merit," which is supposed to be proportional to the "utility"
or "ability" of the individual which that chromosome
represents. For many problems, particularly function
optimization, the fitness function should simply measure the
value of the function.

2.4 Selection

 Determine which strings are "copied" or "selected" for
the mating pool and how many times a string will be
"selected" for the mating pool. Higher performers will be
copied more often than lower performers. Example: the
probability of selecting a string with a fitness value of f is
f/ft, where ft is the sum of all of the fitness values in the
population.

 Individuals are chosen using "stochastic sampling
with replacement" to fill the intermediate population. A
selection process that will more closely match the expected
fitness values is "remainder stochastic sampling." For each
string i where f/ft is greater than 1.0, the integer portion of this
number indicates how many copies of that string are directly
placed in the intermediate population. All strings (including
those with f/ft less than 1.0) then place additional copies in the
intermediate population with a probability corresponding to the
fractional portion of f/ft. For example, a string with f/ft = 1:36
places 1 copy in the intermediate population, and then receives
a 0:36 chance of placing a second copy. A string

with a fitness of f/ft = 0:54 has a 0:54 chance of placing
one string in the intermediate population. Remainder stochastic
sampling is most efficiently implemented using a method
known as stochastic universal sampling. Assume that the
population is laid out in random order as in a pie graph, where
each individual is assigned space on the pie graph in
proportion to fitness. An outer roulette wheel is placed around
the pie with N equally-spaced pointers. A single spin of the
roulette wheel will now simultaneously pick all N members of
the intermediate population.

 2.5 Reproduction

After selection has been carried out the construction of the

intermediate population is complete and recombination can
occur. This can be viewed as creating the next population from
the intermediate population. Crossover is applied to randomly
paired strings with a probability denoted Pc. (The population

ISSN : 0975-4024 473

Er.Rajiv kumar / International Journal of Engineering and Technology Vol.2 (6), 2010, 472-476

should already be sufficiently shuffled by the random selection
process.) Pick a pair of strings. With probability pc
"recombine" these strings to form two new strings that are
inserted into the next population. In the proposed algorithm we
use the modified crossover operator.

 Good individuals will probably be selected

several times in a generation, poor ones may not be at all.
Having selected two parents, their chromosomes are
recombined, typically using the mechanisms of crossover and
mutation. The previous crossover example is known as single
point crossover. Crossover is not usually applied to all pairs of
individuals selected for mating. A random choice is made,
where the likelihood of crossover being applied is typically
between 0.6 and 1.0. If crossover is not applied, offspring are
produced simply by duplicating the parents. This gives each
individual a chance of passing on its genes without the
disruption of crossover.

Mutation is applied to each child individually after
crossover. It randomly alters each gene with a small
probability. The next diagram shows the fifth gene of a
chromosome being mutated: The traditional view is that
crossover is the more important of the two techniques for
rapidly exploring a search space. Mutation provides a small
amount of random search, and helps ensure that no point in the
search has a zero probability of being examined.

2.6 Convergence
The convergence of the genetic algorithm is concern with

the uniformity in the population of solution.when 95 % of the
population has the same result then we can say that the gene is
converge. As the population converges, the average fitness will
approach that of the best individual. A GA will always be
subject to stochastic errors. One such problem is that of genetic
drift. Even in the absence of any selection pressure (i.e. a
constant fitness function), members of the population will still
converge to some point in the solution space.

 This happens simply because of the accumulation
of stochastic errors. If, by chance, a gene becomes
predominant in the population, then it is just as likely to
become more predominant in the next generation as it is to
become less predominant. If an increase in predominance is
sustained over several successive generations, and the
population is finite, then a gene can spread to all members of
the population. Once o gene has converged in this way, it is
fixed; crossover cannot introduce new gene values. This
produces a ratchet effect, so that as generations go by, each
gene eventually becomes fixed. The rate of genetic drift
therefore provides a lower bound on the rate at which a GA
can converge towards the correct solution. That is, if the GA is
to exploit gradient information in the fitness function, the
fitness function must provide a slope sufficiently large to
counteract any genetic drift. The rate of genetic drift can be
reduced by increasing the mutation rate. However, if the
mutation rate is too high, the search becomes effectively
random, so once again gradient information in the fitness
function is not exploited.

3. Structure of Proposed GA-Based Algorithm

Algorithm GA (Modified crossover GA)

(1) Begin

(2) Initialize Population (randomly generated);

(3) Fitness Evaluation;

(4) Repeat

(5) Selection(Roullete wheel Selection) ;

(6) Modified crossover;

(7) Inversion();

(8) Fitness Evaluation;

(9) Elitism replacement with Filtration;

(10) Until the end condition is satisfied;

(11) Return the fittest solution found;

(12) End

4. Experimental Setup

 The Individual are randomly generated to form an initial
population. Successive generations of reproduction and
crossover produce increasing numbers of individuals .
Modified crossover operator with crossover probability Pc is
0.6 is taken and then change the inversion probability with
respect to crossover probability. The experiement is perform
with two crossover probability (pc) i.e.0.6 and 1.0 Crossover
operator exploited the population or you can say that it can
diversify the population. But due to the genetic drift some
time the population is converge to the local optimal point, At
that time crossover operation can not diversify the population.
The inversion operator is explorative in nature ,it diversify
the population ,but in general the probability of inversion is
very low . so in our simulation We first have 0.1 inversion
probability then we proceed with .01,.001.

5. Simulation Results

 In this experiment we have compare modified crossover

GA with two crossover probability Pc ie 0.6 and 1.0 also with
variable inversion probability .we find that the performance
and convergence state of the GA is greatly effected .

ISSN : 0975-4024 474

Er.Rajiv kumar / International Journal of Engineering and Technology Vol.2 (6), 2010, 472-476

Table 1. Parameters of GA

Figure 1.Comparision of Pi (0.1,0.01,0.001) with Cp=0.6,between No.of
case and No. of Iteration

Figure 1.Comparision of Pi (0.1,0.01,0.001) with

Cp=0.6,between No.of case and No. of Iteration

Figure 2.Comparision of Pi (0.1,0.01,0.001) with Cp=1.0 ,between No.of

case and No. of Iteration

6. Conclusion

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

No.of Cases

N
o

.o
f

It
er

at
io

n

GA 0.1 GA 0.01 GA 0.001

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

No. of Cases

N
o

.o
f

It
er

at
io

n

GA 0.1 GA 0.01 GA 0.001

Parameter / Strategy Setting

Population Size 30
Population Type Generational
Initialization Random
Selection Roulette wheel
Crossover Two Parents, Modified

crossover
Crossover Probability 0.6 and 1.0
Variable Inversion
Probability

0.1,0.01,0.001

Replacement strategy Keep 80 % Best
Stopping Strategy 85 % Population converge
No. of process to be
Schedule

5

Fitness criterion Minimum Weighted Turn
Around Time

Sr.No.

Job Service Time in
Second

CP=0.6 CP=1.0

J1 J2 J3 J4 J5 IPi=0.1 IPi =0.01 IPi =0.001 IPi =0.1 IPi =0.01 IPi =0.001
1 17 21 5 10 24 11 13 15 10 9 8
2 12 24 4 16 19 20 15 19 13 11 8
3 11 27 3 23 18 9 19 10 12 7 9
4 14 19 21 2 7 22 18 12 11 7 7
5 22 11 10 19 1 17 13 11 8 9 7
6 12 14 17 27 13 19 14 23 10 8 7
7 15 7 24 28 30 14 10 14 8 8 8
8 17 11 17 26 10 16 15 10 10 8 12
9 24 15 16 23 18 14 12 14 24 7 8
10 10 9 27 21 19 14 16 12 13 7 7
11 25 16 15 23 12 27 22 15 8 7 9
12 20 17 11 14 21 16 8 1 9 8 9
13 9 29 22 10 14 15 21 13 8 8 7
14 21 15 24 16 20 24 16 15 7 8 8
15 14 24 13 28 17 12 13 13 26 9 10
16 26 30 29 19 20 17 15 13 13 8 7
17 23 17 20 16 27 19 11 13 8 8 7
18 23 22 17 28 21 10 14 13 7 8 8
19 14 20 9 10 20 19 13 21 9 8 12
20 18 27 5 29 23 19 12 16 16 13 8

334 290 273 230 166 166

16.7 14.5 13.65 11.5 8.3 8.3

Cp = Crossover Probability=0.6,1.0
Pi =Porbability of Inversion =0.1,0.01,0.001

Table 2. Comparison Results

TotalNo.of Iteration Is

s

s

1

20








Mean Iteration
I

20

s

s

s

1

20

 





ISSN : 0975-4024 475

Er.Rajiv kumar / International Journal of Engineering and Technology Vol.2 (6), 2010, 472-476

 In this paper, we examine the effect of varying
inversion probability with respect to variable crossover
probability. The combine variation of the probability of the
two operator will have enhance the performance of GA. We
have found that when the probability of inversion is decrease
with constant crossover probability ie cp=0.6 then the no of
iteration is also decrease and we get good result by decreasing
the inversion probability. The second thing that examine is
that as the probability of cross over increase i.e. from 0.6 to
1.0 and inversion probability decrease from 0.1 to 0.001. the
performance of the genetic algorithm is enhanced . so it is
clear that decreasing inversion probability and increasing
crossover probability increase the performance of genetic
algorithm under operating system process scheduling problem.

REFERENCES

[1] R.Kumar , Dr. R .Kumar, S.Gill, A.Kaushik,” Genetic Algorithm

Approach to Operating system Process scheduling problem”,
International Journal of Engineering Science and Technology,2010,pp
4247- 4252.

[2] L.Davis,” Applying Adaptive Algorithms to Epistactic Domains”, in
Proceeding of the Int. Joint Conf.on Artificial Intelligence (IJCAI’85),
Los Angeles, CA. pp.162-164.

[3] David E.Goldberg.Genetic Algorithm in Search, Optimization and
Machine Learning.Addision- Wesley Publishing Company,Inc.,1989.

[4] Holland, J.H., 1975. “Adaptations in natural and artificial systems”, Ann
Arbor: The University of Michigan Press

[5] M.Srininivas and L.M.Patnaik,”Genetic Algorithms: A survey”, IEEE
computer Magazine,pp.17-26,june 1994

[6] L.Davis. Job-shop scheduling with genetic algorithms.Van Nostrand
Reinhold,1990

[7] S. French, (1982). Sequencing and Scheduling: And introduction to the
Mathematics of the Job Shop, Ellis Horwood, Chichester.

ISSN : 0975-4024 476

