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Abstract— Many Research have be done for Process scheduling 
Problem. Most of the time  parameters of the Scheduling 
problem have changed but the problem remain same as to find 
out the  optimal schedule which can optimize the problem under 
consideration. Implementation of genetic algorithm for operating 
system process scheduling is a new idea . Genetic Algorithm is a 
robust technique for solve process scheduling and optimization 
problem. The performance of  any genetic algorithm is depend 
on the operators used for the GA Simulation. In this paper we 
will analyse the performance of  modified  cross over genetic 
algorithm for operating system process scheduling problem. We 
take two operator of GA i.e. explorative operator and exploited 
operator. The performance of the genetic algorithm is greatly 
depends upon these two operator. As the probability of 
explorative and exploited operator is changed the convergence of 
Genetic algorithm is also changed.   
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1.Introduction 
 
         Process  Scheduling is concern with allocation of 
hardware to the ready process. The scheduling problem is 
consider as NP-hard. There are many techniques which have 
been developed to handle the scheduling problem. But no is 
the best. The implementation of genetic algorithm for 
operating system is a new idea[1].   Over many  years, most of 
the  researchers thought  that optimal scheduling is very 
difficult  task to achieve. With the growing interest in Genetic 
Algorithms (GAs)  and the GA  is another promising global 
optimization  technique[3]  be used for operating process 
scheduling  problem. The modified cross over genetic 
algorithm is first proposed by  Davis[2] and apply this 
algorithm to operating system process scheduling  problem by 
rajiv et al[3]. Genetic algorithms(Gas) are adaptive methods 
which may be used to solve search and optimization problems. 
Genetic algorithms (GAs) were first proposed by the John 
Holland[4] in the 1960s 
           This Genetic algorithm have been  applied to many 
scientific and engineering  problems[5][6][7]. The 
performance of the genetic algorithm is limited by some 
problem, typically premature convergence. This happens 
simply because of the accumulation of stochastic errors. If by 

chance, a gene becomes predominant in the population, then it 
just as likely to become more predominant in the next 
generation as it is to become less he predominant. If an 
increase in predominance is sustained over several successive 
generations and population is finite, then a gene can be spread 
to all members of the population. Once gene has converged in 
this way, it is fixed then crossover cannot introduce new gene 
values. The crossover operator and mutation operator is 
consider the basic operator of  GA . The cross over operator is 
consider as explorative operator and mutation operator is 
consider as exploited operator. The cross over operator 
diversify the population and mutation operator exploit the new 
result . when the population is premature converge then 
mutation exploit the population  and reduce the premature 
convergence situation and hence the searching power of 
genetic algorithm. 

 
1.2 The   Paper Description  
 
The major part of this paper, contained in section 2, will 

explain working of genetic algorithm and their application in 
process scheduling problem. The GA is robust techniques and 
it has no. of operators which have their own properties .The 
parameter setting in the genetic algorithm is concerned  with 
the setting of applicable static values of the operators used. Ie 
crossover probability , inversion rate , population size etc. 
Accessible introduction can be found in the books by Davis [8] 
and Goldberg[9] .Section 3 describe the proposed structure of 
genetic algorithm. Section 4 explain the experimental setup for  
analysis  and Section 5 shows the experimental results of the  
problem  under consideration and section 6 is conclusion . 

 
2.  Introduction of  Genetic Algorithm 

 
2.1 overview  

 
  The evaluation function, or objective function, provides a 

measure of performance with respect to a particular set of 
parameters. The fitness function transforms that measure of 
performance into an allocation of reproductive opportunities. 
The evaluation of a string representing a set of parameters is 
independent of the evaluation of any other string. The fitness 
of that string, however, is always defined with respect to other 
members of the current population. In the genetic algorithm, 
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fitness is defined by: fi /fA where fi is the evaluation 
associated with string i and fA is the average evaluation of all 
the strings in the population. Fitness can also be assigned based 
on a string's rank in the population or by sampling  methods, 
such as tournament selection. The execution of the genetic 
algorithm is a two-stage process. It starts with the  current 
population. Selection is applied to the current population to 
create an intermediate population. Then recombination and 
mutation are applied to the intermediate population to create 
the next population. The process of going from the current 
population to the next population constitutes one generation in 
the execution of a genetic algorithm. In the first generation the 
current population is also the initial population. After 
calculating fi /fA for all the strings in the current population, 
selection is carried out. The probability that strings in the 
current population are copied (i.e. duplicated) and placed in the 
intermediate generation is in proportion to their fitness. 
 

2.2 Coding 
         
         Before a GA can be run, a suitable coding (or 

representation) for the problem must be devised. We also 
require a fitness function, which assigns a figure of merit to 
each coded solution. During the run, parents must be selected 
for reproduction, and recombined to generate offspring. It is 
assumed that a potential solution to a problem may be 
represented as a set of parameters (for example, the parameters 
that optimize a neural network). These parameters (known as 
genes) are joined together to form a string of values (often 
referred to as a chromosome. For example, if our problem is to 
maximize a function of three variables, F(x; y; z), we might 
represent each variable by a 10-bit binary number (suitably 
scaled). Our chromosome would therefore contain three genes, 
and consist of 30 binary digits. The set of parameters 
represented by a particular chromosome is referred to as a 
genotype. The genotype contains the information required to 
construct an organism which is referred to as the phenotype. 
For example, in a bridge design task, the set of parameters 
specifying a particular design is the genotype, while the 
finished construction is the phenotype. 

 
                  The fitness of an individual depends on the 

performance of the phenotype. This can be inferred from the 
genotype, i.e. it can be computed from the chromosome, using 
the fitness function. Assuming the interaction between 
parameters is nonlinear the size of the search space is related to 
the number of bits used in the problem encoding. For a bit 
string encoding of length L; the size of the search space is 2L 

and forms a hypercube. The genetic algorithm samples the 
corners of this L-dimensional hypercube. Generally, most test 
functions are at least 30 bits in length; anything much smaller 
represents a space which can be enumerated. Obviously, the 
expression 2L grows exponentially. As long as the number of 
"good solutions" to a problem are sparse with respect to the 
size of the search space, then random search or search by 
enumeration of a large search space is not a practical form of 
problem solving. On the other hand, any search other than 
random search imposes some bias in terms of how it looks for 
better solutions and where it looks in the search space. A 
genetic algorithm belongs to the class of methods known as 

"weak methods" because it makes relatively few assumptions 
about the problem that is being solved. Genetic algorithms are 
often described as a global search method that does not use 
gradient information. Thus, no differentiable functions as well 
as functions with multiple local optima represent classes of 
problems to which genetic algorithms might be applied. 
Genetic algorithms, as a weak method, are robust but very 
general. 

 
2.3 Fitness Evolution 
  
      A fitness evolution function must be devised for each 

problem to be solved. Given a particular chromosome, the 
fitness function returns a single numerical "fitness," or "figure 
of merit," which is supposed to be proportional to the "utility" 
or "ability" of the individual which that chromosome 
represents. For many problems, particularly function 
optimization, the fitness function should simply measure the 
value of the function. 

 
2.4 Selection 

     
            Determine which strings are "copied" or "selected" for 
the mating pool and how many times a string will be 
"selected"   for the mating pool.  Higher performers will be 
copied more often than lower performers.  Example: the 
probability of    selecting a string with a fitness value of f is 
f/ft, where ft is the sum of all of the fitness values in the 
population. 

           Individuals are chosen using "stochastic sampling 
with replacement" to fill the intermediate population. A 
selection process that will more closely match the expected 
fitness values is "remainder stochastic sampling." For each 
string i where f/ft is greater than 1.0, the integer portion of this 
number indicates how many copies of that string are directly 
placed in the intermediate population. All strings (including 
those with f/ft less than 1.0) then place additional copies in the 
intermediate population with a probability corresponding to the 
fractional portion of f/ft. For example, a string with f/ft = 1:36 
places 1 copy in the intermediate population, and then receives 
a 0:36 chance of placing a second copy. A string 

with a fitness of f/ft = 0:54 has a 0:54 chance of placing 
one string in the intermediate population. Remainder stochastic 
sampling is most efficiently implemented using a method 
known as stochastic universal sampling. Assume that the 
population is laid out in random order as in a pie graph, where 
each individual is assigned space on the pie graph in 
proportion to fitness. An outer roulette wheel is placed around 
the pie with N equally-spaced pointers. A single spin of the 
roulette wheel will now simultaneously pick all N members of 
the intermediate population. 

 
 

 2.5 Reproduction 
 
After selection has been carried out the construction of the 

intermediate population is complete and recombination can 
occur. This can be viewed as creating the next population from 
the intermediate population. Crossover is applied to randomly 
paired strings with a probability denoted Pc. (The population 
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should already be sufficiently shuffled by the random selection 
process.) Pick a pair of strings. With probability pc 
"recombine" these strings to form two new strings that are 
inserted into the next population. In the proposed algorithm we 
use the modified crossover operator. 

  
               Good individuals will probably be selected 

several times in a generation, poor ones may not be at all. 
Having selected two parents, their chromosomes are 
recombined, typically using the mechanisms of crossover and 
mutation. The previous crossover example is known as single 
point crossover. Crossover is not usually applied to all pairs of 
individuals selected for mating. A random choice is made, 
where the likelihood of crossover being applied is typically 
between 0.6 and 1.0. If crossover is not applied, offspring are 
produced simply by duplicating the parents. This gives each 
individual a chance of passing on its genes without the 
disruption of crossover.  

Mutation is applied to each child individually after 
crossover. It randomly alters each gene with a small 
probability. The next diagram shows the fifth gene of a 
chromosome being  mutated: The traditional view is that 
crossover is the more important of the two techniques for 
rapidly exploring a  search space. Mutation provides a small 
amount of random search, and helps ensure that no point in the 
search has a zero probability of being examined. 

 
2.6 Convergence 
The convergence of the genetic algorithm is concern with 

the uniformity in the population of solution.when 95 % of the 
population has the same result then we can say that the gene is 
converge. As the population converges, the average fitness will 
approach that of the best individual. A GA will always be 
subject to stochastic errors. One such problem is that of genetic 
drift. Even in the absence of any selection pressure (i.e. a 
constant fitness function), members of the population will still 
converge to some point in the solution space. 

              This happens simply because of the accumulation 
of stochastic errors. If, by chance, a gene becomes 
predominant in the population, then it is just as likely to 
become more predominant in the next generation as it is to 
become less predominant. If an increase in predominance is 
sustained over several successive generations, and the 
population is finite, then a gene can spread to all members of 
the population. Once o gene has converged in this way, it is 
fixed; crossover cannot introduce new gene values. This 
produces a ratchet effect, so that as generations go by, each 
gene eventually becomes fixed. The rate of genetic drift 
therefore provides a lower bound on the rate at which a GA 
can converge towards the correct solution. That is, if the GA is 
to exploit gradient information in the fitness function, the 
fitness function must provide a slope sufficiently large to 
counteract any genetic drift. The rate of genetic drift can be 
reduced by increasing the mutation rate. However, if the 
mutation rate is too high, the search becomes effectively 
random, so once again gradient information in the fitness 
function is not exploited. 

 
 
3. Structure of Proposed GA-Based Algorithm 

 
Algorithm GA (Modified  crossover GA) 
 
(1)  Begin 
 
(2)           Initialize Population (randomly generated); 
 
(3)         Fitness Evaluation; 
 
(4)    Repeat 
 
(5)     Selection( Roullete wheel Selection) ; 
 
(6)         Modified crossover; 
 
(7)         Inversion(); 
 
(8)         Fitness Evaluation; 
 
(9)      Elitism replacement with Filtration; 
 
(10)        Until the end condition is satisfied; 
 
(11)        Return the fittest solution found; 
 
(12)       End 
 
4. Experimental Setup 

  
      The Individual   are randomly generated to form an initial 
population. Successive generations of reproduction and 
crossover produce increasing numbers of individuals . 
Modified crossover operator with crossover probability Pc is 
0.6 is taken and then change the inversion probability with 
respect to crossover probability. The experiement is perform 
with two crossover probability (pc) i.e.0.6 and 1.0  Crossover 
operator exploited the population or  you can say that it can 
diversify the population. But due to the genetic drift some 
time the population is converge to the local optimal point, At 
that time crossover operation can not diversify the population. 
The inversion operator is  explorative in nature ,it diversify 
the population ,but in general the probability of inversion is 
very low . so in our simulation  We first have 0.1 inversion 
probability then we proceed with .01,.001. 

 
5. Simulation Results 

      
     In this experiment we have compare modified crossover  

GA with two crossover probability Pc ie 0.6 and 1.0 also with 
variable inversion probability .we find that the performance 
and convergence state of the GA is greatly effected .  
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Table 1.  Parameters of GA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 

Figure 1.Comparision  of Pi (0.1,0.01,0.001) with Cp=0.6,between No.of 
case and No. of Iteration 

 

 
Figure 1.Comparision  of Pi (0.1,0.01,0.001) with 

Cp=0.6,between No.of case and No. of Iteration 
 

 
Figure 2.Comparision  of Pi (0.1,0.01,0.001) with Cp=1.0 ,between No.of 

case and No. of Iteration 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. Conclusion 
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Parameter / Strategy Setting 

Population Size 30 
Population Type Generational 
Initialization Random 
Selection Roulette wheel 
Crossover Two Parents, Modified 

crossover 
Crossover Probability 0.6 and 1.0 
Variable Inversion 
Probability 

0.1,0.01,0.001 
 

  
Replacement strategy Keep 80 % Best 
Stopping Strategy 85 % Population converge 
No. of process to be 
Schedule 

5 

Fitness criterion Minimum Weighted Turn 
Around  Time 

 
Sr.No. 

Job Service Time in 
Second 

CP=0.6 CP=1.0 

J1 J2 J3 J4 J5 IPi=0.1 IPi =0.01 IPi =0.001 IPi =0.1 IPi =0.01 IPi =0.001 
1 17 21 5 10 24 11 13 15 10 9 8 
2 12 24 4 16 19 20 15 19 13 11 8 
3 11 27 3 23 18 9 19 10 12 7 9 
4 14 19 21 2 7 22 18 12 11 7 7 
5 22 11 10 19 1 17 13 11 8 9 7 
6 12 14 17 27 13 19 14 23 10 8 7 
7 15 7 24 28 30 14 10 14 8 8 8 
8 17 11 17 26 10 16 15 10 10 8 12 
9 24 15 16 23 18 14 12 14 24 7 8 
10 10 9 27 21 19 14 16 12 13 7 7 
11 25 16 15 23 12 27 22 15 8 7 9 
12 20 17 11 14 21 16 8 1 9 8 9 
13 9 29 22 10 14 15 21 13 8 8 7 
14 21 15 24 16 20 24 16 15 7 8 8 
15 14 24 13 28 17 12 13 13 26 9 10 
16 26 30 29 19 20 17 15 13 13 8 7 
17 23 17 20 16 27 19 11 13 8 8 7 
18 23 22 17 28 21 10 14 13 7 8 8 
19 14 20 9 10 20 19 13 21 9 8 12 
20 18 27 5 29 23 19 12 16 16 13 8 

 

334 290 273 230 166 166 

     

16.7 14.5 13.65 11.5 8.3 8.3 

Cp = Crossover Probability=0.6,1.0 
Pi =Porbability of Inversion =0.1,0.01,0.001 

Table 2. Comparison Results 
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           In this paper, we examine the effect of varying 
inversion probability with respect to variable crossover 
probability. The combine variation of the probability of the 
two operator will have enhance the performance of  GA. We 
have found that when the probability of inversion is  decrease 
with constant crossover probability ie cp=0.6 then the no of 
iteration is also decrease and we get good result by decreasing 
the inversion probability. The second thing that examine is 
that as the probability of cross over increase i.e. from 0.6 to 
1.0 and inversion probability decrease from 0.1 to 0.001.  the 
performance of the genetic algorithm is enhanced . so it is 
clear that decreasing inversion probability and increasing 
crossover probability increase the performance of genetic 
algorithm under operating system process scheduling problem.  
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