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Abstract— Three different configurations have been reported for programming explicitly inverting, 

positive fractional and non-inverting gains, respectively. This paper proposes a single operational 
amplifier digitally programmable circuit for a set of arbitrary gains, which may include inverting, 
positive fractional and/or non-inverting gains, with minimum number of elements. The design procedure 
is illustrated with an example. 

Keyword- Amplifier, Programmable amplifier, Digitally programmable amplifier 

 

I. INTRODUCTION 
Three different configurations for realizing explicitly negative, positive fractional and positive gains are 

shown in Fig. 1 (a), (b) and (c), respectively [1].  
 

 
 
      (a)            (b)     (c) 

Fig. 1.  (a) Inverting amplifier, (b) Buffered Attenuator, (c) Non-inverting amplifier 

It is possible to derive a general amplifier for an arbitrary gain by using switches. Close examination of Fig. 1 
revels that each configuration uses 1 OA and two resistors connected suitably. It should, therefore, be possible 
that any one of the amplifier circuits can be converted into the other two by disconnecting some connections and 
reconnecting them suitably. For example, inverting amplifier circuit of Fig. 1(a) can be converted into that 
shown in (b) by the following procedure. 

 
1. Disconnect g from vi and reconnect to ground. 
2. Disconnect r from vo and reconnect to vi. 
3. Disconnect non-inverting terminal (+) of the operational amplifier from earth and reconnect to node A. 
4. Disconnect inverting terminal (-) terminal of the operational amplifier from node A and reconnect to vo.  

 
 

 
Fig. 2.  A general amplifier for realizing an inverting gain and/or a positive attenuation  
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Obviously, minimum 8 switches would be required to carry out the above operations as shown in Fig. 2: 
switches 1-4 to be closed (opened) and switches 5-8 to be opened (closed) for realizing an inverting (positive 
fractional) gain. 

 
Similarly, one can easily verify that the amplifier in Fig. 1(a) can be converted into that shown in (c) by 

providing minimum 4 additional switches: two switches for disconnecting g from vi and reconnecting it to 
ground and two for disconnecting + terminal from ground and reconnecting it to vi. 

 
Further, one can verify that the circuit of Figure 1(a) can be converted into both (b) and (c) by providing 

minimum 9 additional switches as shown in Fig. 3. Switches 1-8 are required for converting an inverting 
amplifier into a positive attenuator and vice versa and one additional switch 9 is required to convert the 
inverting amplifier into the non-inverting amplifier and vice versa. 

 

 
 

Gain switches close
Negative 1, 2, 3, 4
Positive ≤ 1 5, 6, 7, 8
Positive  ≥ 1  5, 9, 3, 4 

 
Fig. 3.  A general amplifier for realizing an arbitrary gain value   

 

II. GENERAL PROGRAMMABLE GAIN AMPLIFIER  
A set of N gains consisting of NAI inverting, NAA positive fractional and NAN non-inverting gains can be 

programmed as follows. 
 
(i) Convert all the gains into gains of any one type, say inverting one, using the following relations. 

 
|AI| = 1/AA � 1,         |AI| = AN � 1 (1) 

 
Let η be the number of total finite non-zero inverting gains after this conversion.  
 

(ii) Realize η inverting gains by a programmable inverting amplifier with the minimum number of 
elements (resistors, Op Amp and switches) following the methods given in [1][2]. 

 
(iii) Realize the other gains with the additional switches as shown in Fig. 3. 

 
The number of additional switches required is determined from the table given in Fig. 3 as follows. 
 

1. Note that the switches 1, 2, 6, 7, 8 and 9 operate only for one particular type of gains: 1 and 2 for 
inverting, 6, 7 and 8 for positive fractions and 9 for non-inverting. The switches 3 and 4 operate for 
both inverting and non-inverting types of gains, and the switch 5 operate for both positive fractional 
and non-inverting gains.  We shall call the switches 1-2, 6-9 as single gain type and 3, 4 and 5 as dual 
gain type switches.  

 
2. Switches 1 and 2 are to be connected explicitly for any one inverting gain. Hence, 2 sets of NAI 

switches all in parallel will be required, one switch for each gain in NAI  
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3. Similarly, switches 6, 7, 8 are explicitly required for realizing any one attenuation. Hence, 3 sets of NAN 

parallel switches will be required, one switch for each gain in NAA. 
 
4. An additional switch 9 is required for realizing any one non-inverting gain. Hence, NAN switches in 

parallel will be required, one switch for each gain in NAN. 
 
5. Switch 5 is required for realizing one positive attenuation and one non-inverting gain. Hence, one set of 

NAA + NAN switches will be required, one for each gain in NAA and NAN. 
 
6. Similarly, switches 3 and 4 are required for realizing one inverting and one non-inverting gain. Hence, 

2 sets of NAI + NAN  parallel switches will be required, one switch for each gain in NAI and NAN. Thus, the 
number of additional switches required is 

 
(2NAI + 3NAA + NAN)  + (NAA + NAN ) + 2(NAI + NAN) = 4NAI  + 4NAA + 4NAN = 4N (2) 

 
The number of total switches required is  

 
NS  =  N + 4N = 5N.  (3) 

 
7. If the number of switches in a bank equals the number of specified gains, then they all can be replaced 

by a short.  
 

Based on the above theory, we state the following theorem. 
 
A minimal realization of a set of N arbitrary programmable gains requires 1 OA, η + 1 resistors and N + NS 

switches where η is the total number of actual finite non-zero inverting gains realized. 
 
It is interesting to note that Genin's theorem [3] is a special case of this theorem for only positive gains with 

the lowest gain value as 1. 
 

III. DESIGN  
The design procedure for the general programmable amplifier of Fig. 3 is formulated as follows. 
 

1. Convert each gain AA and AN into AI as per eqn (1). 
 
2. Arrange all the converted inverting gains in an ascending order. 

 
3. Determine the resistor values using the design relations for realizing these inverting gains as an 

inverting type PGA [1][2]. 
 
4. Replace each of the switches 1-9 by a bank of parallel switches as follows. Replace all the single gain 

type switches 1, 2 by NAI parallel switches, 6, 7, 8 by NAA parallel switches, 9 by NAN parallel switches. 
Replace the dual gain type switches 3, 4 by NAA + NAN parallel switches, 5 by NAA + NAN  parallel 
switches. 

 
5. If in a particular bank of switches, the number of switches equal to the total number of specified gains, 

then all these switches can be replaced by one short. 

A. Example  

Design a minimal programmable gain amplifier for the gains -7, -2, -1, 1/4, 1/2, 1, 3. Determine the numbers 
of resistors and switches required. What would be these numbers if the attenuations ¼ and 1/2 are not required 
and when non-inverting gains 1 and 3 are also not required? 

 
Using eqn (1), the following conversion table is obtained. 
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TABLE I.  CONVERSION TABLE 

Specified gain AN → -7 -2 -1 1/4 1/2 1 3 
Converted gain |AI| → 7 2 1 3 1 0  2 

 
Hence, the gains to be programmed, arranged in ascending order, are |AI| → 0, 1, 2, 3, 7. The finite non-zero 

inverting gains are 1, 2, 3, 7. Thus, η = 4. 
One minimal programmable inverting amplifier is obtained as an S-ladder realization from [1][2]. Then the 

complete programmable gain amplifier for the specified gains is obtained as shown in Fig. 4 in which the 
switches 1-9 are replaced by banks of parallel switches. 

 
The number of resistors NR = η + 1 = 5. The number of switches required, from eqn (3), is NS = N + 4N = 35. 

If the two attenuations 1/4 and 1/2 are not to be programmed, then η (the finite non-zero inverting gains 1, 2, 7) 
will become 3. Hence, NR = 4 and the number of switches = 5 + 4NAI + 4NNI = 5 + 4× 3 + 4 × 2 = 25. 

 
The eight switches corresponding to the attenuations of ¼ and 1/2 in the switch banks 5, 6, 7 and 8 in Fig. 4 

will appear as open circuits and, therefore, can be eliminated. Finally, the switch banks 3 and 4 have the number 
of switches equal to the number of gains to be programmed; they can be replaced by shorts. 

 
 

 
Fig. 4.  Amplifier for the Example  

If the gains 1 and 3 are also not to be programmed, then η remains as 3. Hence, NR = 4. Now the switches 
corresponding to the gains 1 and 3 in the switch banks 3, 4, 5, 9 will be opened. Note that the number of parallel 
switches in each of the switch banks 1, 2, 3 and 4 equals the number of the specified gains. Hence, these 
switches can be replaced by shorts. Thus, the total number of switches required will be only 3. 

 

IV. CONCLUSION 
A general circuit configuration capable of programming a set of N arbitrary gains with one OA, 4N switches 

and η + 1 resistors has been proposed. The design procedure has been illustrated with an example. 
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