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     Abstract- In the present paper the problem of propagation of Rayleigh waves due to a finite rigid 
barrier in a shallow ocean has been analyzed. The reflected, transmitted and scattered waves have been 
obtained by fourier transformation and Wiener-Hopf technique. Numerical computations for the 
amplitude of the scattered and the reflected waves have been made versus the wave number. It has been 
done by taking the barriers of different sizes. The scattered waves behave as a decaying cylindrical wave 
at distant points. The amplitude of the reflected and the scattered waves falls off rapidly as the wave 
number increases slowly.  
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I. INTRODUCTION 
Seismic waves appear on the surface of the earth during an earthquake and loose their energies around the 
inhomogeneities and irregularities on the surface of the earth. Rayleigh waves are responsible for the destruction 
of buildings and loss of human lives. This is due to the retrograde nature of motion of Rayleigh waves. Several 
studies have been carried out to analyze the effect of irregularities like rocks, mountains, grooves, trenches etc. 
on the incidence of Rayleigh waves. The scattering of Rayleigh waves due to irregularities in the surface leads 
to large amplification and variation in ground motion during earthquakes. 
                        The propagation of Rayleigh waves in the presence of a rigid barrier in the surface of a shallow 
ocean lying over the solid half space has been discussed here using Wiener-Hopf technique [9] and Fourier 
transform [10]. The effect of a vertical barrier, fixed in an infinitely deep sea, on normally incident surface 
waves was first considered by Ursell [12] for a two dimensional case. The problem of attenuation of Rayleigh 
waves due to the presence of a surface impedence in the surface of a solid half space has been studied by 
Gregory [6]. The problem of diffraction of compressional waves due to a rigid barrier in the surface of a deep 
sea-water and in an ocean superimposed on a solid half space has been studied by Deshwal [3, 4] using the 
technique of Wiener and Hopf. Momoi [7, 8] has considered the scattering of Rayleigh waves by semicircular 
and rectangular discontinuities in the surface of a solid half space using the technique of Fourier transformation. 
The problem of reflection and transmission of a plane SH-wave at a corrugated interface between a dry sandy 
half space and an anisotropic elastic half space has been studied by Tomar and Kaur [11]. They have used the 
Rayleigh’s method of approximation for studying the effect of sandiness, the anisotropy, the frequency and the 
angle of incidence on the reflection and transmission coefficients. The reflection of shear waves in visco-elastic 
medium at parabolic irregularity has been studied by Chattopadhyay et al. [1]. They found that amplitude of 
reflected wave decreases with increasing length of notch and increases with increasing depth of irregularity. 
Here we discuss the propagation of Rayleigh waves through irregularity in the form of a rigid barrier and the 
results have been discussed by taking different sizes of barrier. 

II. FORMULATION OF THE PROBLEM 
The scattering of incident Rayleigh waves at the rigid barrier in the shallow ocean has been discussed in this 
paper.  The problem is two dimensional and is being analyzed in zx- plane. The z-axis has been taken vertically 
downward and x-axis along the free surface of the ocean. The rigid barrier of depth h is held fixed in the free 
surface of water of depth H along the z-axis. The water layer and the solid half space are given by 0≤ z≤H and 
z≥H respectively. The geometry of the problem is shown in fig. 1.  
The wave equations in the liquid and solid media are 

                ( )2 2k 0, 0 z H∇ + φ= ≤ ≤
                                                                                             

                        (1) 
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                ( )2 2
1 1k 0, z H∇ + φ = ≥                                                                                                                          (2) 

                ( )2 2
2 1k 0, z H∇ + ψ = ≥                                                                                                                         (3) 

where k k ik′ ′′= + , 1 1 1k k ik′ ′′= + , 2 2 2k k ik′ ′′= +                                                                                                (4) 

The imaginary parts of 1 2k, k , k are assumed to be small and positive. Let the incident potential distribution in 
the solid and liquid be 

                ( ) ( )( ) ( )2 2 2
1i N 2 N N N 1N 1N 2A 2 k cos H exp i x z H k , z H⎡ ⎤φ = α − β β − α −β − β ≥⎢ ⎥⎣ ⎦                                 (5) 

               ( )( ) ( )2
1i N N N N 1N 22Ai cos H exp i x z H k , z H⎡ ⎤ψ = αβ β − α −δ − ≥⎢ ⎥⎣ ⎦                                                   (6)  

and 

               ( )i N NAsin z exp i x , 0 z Hφ = β − α ≤ ≤                                                                                                 (7) 

where Nα  is a root of the equation 

              
( ) ( )

2 42 2 2
N 1 N N 1N 1N N 2 1N 2tan H 4 2 k k

⎡ ⎤
β =ρβ αβ δ − α − ρβ⎢ ⎥⎢ ⎥⎣ ⎦

                                                                    (8) 

              
2 2 2 2 2 2 2 2 2
N N 1N N 1 1N N 2k , k , kβ = −α β =α − δ =α −                                                                                          (9) 

A is a constant and 1ρ and ρare densities of two media. Let the total potentials be 

              t i, 1t 1 1i 1t 1 1i,φ =φ+φ φ =φ +φ ψ =ψ +ψ                                                                                               (10) 

 
                                                                                      O (0,0)                                        x                                           

 
                                                        z 

Fig. 1. Geometry of the Problem 

The boundary conditions are 

              zz 0, x , z 0τ = −∞ < < ∞ =                                                                                                                 (11) 

              u 0, 0 z h, x 0= ≤ ≤ =                                                                                                                          (12) 

              ( ) ( )zz zz zx 11 1, 0, w w , x , z Hτ = τ τ = = −∞ < < ∞ =                                                                      (13) 

and 1φ and 1ψ  are bounded as z tends to ∞ . The condition (12) shows that the barrier is rigid and there is no 
displacement across it. 

III. SOLUTION OF THE PROBLEM 
We take Fourier transform of (1) to obtain 

               
( ) ( )

_
2 _

2
2

p, z
p, z 0

z

∂ φ
−βφ =

∂                                                                                                                   
(14) 

where 2 2p kβ=± − and ( )
_

p, zφ represents the Fourier transform of ( )x,zφ which can be defined as 

(0, h) 

 (0, H) 
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( ) ( )

_
ipxp, z x, z e dx

∞

−∞

φ = φ∫  

                                  = ( ) ( )
0

ipx ipx

0

x, z e dx x, z e dx
∞

−∞

φ + φ∫ ∫ = ( ) ( )
_ _

p, z p, z− +φ +φ                                                (15) 

If for given z, as x→∞ and M, d > 0, ( ) d xx, z Me−φ  , then ( )
_

p, z+φ is analytic in dη> −  and ( )
_

p, z−φ  is 

analytic in dη< . By analytic continuation , ( )
_

p, zφ and its derivatives are analytic in the strip d d− <η< in the 

complex p-plane. It holds similarly for ( )1 x,zφ  and ( )1 x,zψ . 

Solving equation (14), we have 

                ( ) ( ) ( )
_

z zp, z B p e C p eβ −βφ = +                                                                                                            (16) 

Similarly, we can obtain 

                ( ) ( ) 1
_

z
11 p, z B p e−βφ =                                                                                                                          (17) 

               ( ) ( ) 1
_

z
1 1p, z C p e−δψ =                                                                                                                          (18) 

where 2 2
1 1p kβ =± − and 2 2

1 2p kδ =± − and we have used the condition that 
_

1φ and 
_

1ψ are bounded as z 
tends to infinity. The signs for 1,ββ and 1δ are chosen so that their real parts are always positive for all p. 

Multiplying equation (1) by ipxe , integrating from x=0 to x=∞ and using boundary condition (11), we get 

              ( ) ( ) ( ) ( )2 2
1 N N Np, z p, z 2A sinh z 2iA sin z p

− −

+ +φ +φ − = β − α β −α                                                      (19) 

Putting z = h in (19) and in its derivative and using the notations ( ) ( )
_ _

p , p ,+ −φ φ  ( )p+
′φ and ( )p−

′φ  for 

( )p, h+φ , ( )p, h−φ , ( )p,h+
′φ  and ( )p,h−

′φ  respectively, we have after eliminating A1 from the resulting 

equations                                      ( ) ( ) ( ) ( )1p p tanh h p p+ + + +
⎡ ⎤′ ′φ +φ − = β φ +φ −⎢ ⎥
⎣ ⎦β

  

                                              ( ) ( )2 2 2 2
N N N N N N N2iA cos h tanh h p 2iA sin h p+ αβ β β β −α − α β −α       (20) 

 Integrating equation (1) as x varies from −∞  to 0, an equation in ( )p−φ and ( )p−φ − is obtained as in (20). 
Adding the resulting equation to (20) to find 

               
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1p p p p tanh h p p p p+ + − − + + − −

⎡ ⎤′ ′ ′ ′φ +φ − +φ +φ − = β φ +φ − +φ +φ −⎢ ⎥
⎣ ⎦β

                     (21) 

We take the fourier transform of (13) and using equations from (16) to (18) to get 

               ( ) ( ) ( ) 1HH H
1 2 1B p e C p e E E B e−ββ −β+ = +                                                                                          (22) 

               ( ) ( ) 1HH H
1B p e C p e EB e−ββ −β− =                                                                                                       (23) 

where 

               ( ) 2 2 2
1 1 1 1 1E 2 k 2 p k⎡ ⎤= λ + μ − μ λ⎢ ⎥⎣ ⎦                                                                                                       

(24) 

               ( )2 2 2 2
2 1 1 1 1E 4 p k p= μ βδ λ +δ , ( )2 2 2

1 2 1E k p=β β +δ
                                                                        

(25) 

Solving equations (22) and (23) for ( )B p  and ( )C p  and using their values in (16), we get 

               ( ) ( ) ( ) ( ) 1H
1 2 1p, z E E cosh z H E sinh z H B e−β⎡ ⎤φ = + β − + β −⎣ ⎦                                                             (26) 

We put z=h in (26) and its derivative w.r.t. z and find after eliminating 1B  
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )1 2

1 2

E E cosh h H Esinh h H1p p p p (p) p
E E sinh h H E cosh h H+ − + − + −

⎡ ⎤+ β − + β − ⎡ ′ ′⎢ ⎥φ +φ +φ − +φ − = φ +φ⎢⎢ ⎥ ⎣β + β − + β −⎣ ⎦  

                                                                        ( ) ( )p p+ −
⎤′ ′+φ − +φ − ⎥
⎦

                                                                   (27) 

We can find from (21) and (27) that 

               ( ) ( ) ( ) ( ) ( )p p p p T p+ − + −φ +φ − = −φ − −φ =                                                                                        (28) 

( ) ( )p p+ −φ +φ − is analytic in the region dη> −  and ( ) ( )p p+ −−φ − −φ  is analytic in the region dη< . So by 

analytic continuation, they represent an entire function ( )T p . Since each member of ( )T p tends to 0 as p
tends to ∞ . Hence by Liouville’s theorem, the entire function is identically zero. So from (28), we get 

               ( )p+φ = ( )p−−φ − and ( ) ( )p p− +φ = −φ −                                                                                              (29) 

The results in equation (29) also hold for their derivatives.  

IV. SOLUTION OF THE WIENER-HOPF EQUATION 

We get a Wiener-Hopf type differential equation, when 1B in (26) is eliminated between ( )pφ and ( )p′φ  and  
(20) is used,  

             ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
N N N N N2 p M p p G p p iA M p G p cos h 2sin h p− + −

′ ′ ⎡ ⎤φ − = φ + φ + α − β β + β −α⎣ ⎦   (30) 

where 

              ( ) ( ) ( ) ( ) ( ) ( )M p M p M p H p N p L p+ −= =  

                         = ( )
( ) ( ) ( )

( ) ( )
( ) ( )

2 2
1 2 N

2 2
1 2 2NN 1

E E cosh H Esinh H R p R p p1.
E E sinh h H E cosh h H cosh h L p L p p

∞
+ −

+ − =

⎛ ⎞⎡ ⎤+ β − β −α⎜ ⎟⎢ ⎥ = ⎜ ⎟⎢ ⎥+ β − + β − β β −α⎣ ⎦ ⎝ ⎠
∏

 
(31) 

N±α  and 2N±α are the zeros of ( )H p  and ( )N p  respectively. ( )R p±  and ( )L p± are obtained asymptotic to 

constants as p →∞ . Similarly if 

               ( ) ( ) ( ) ( ) ( ) ( )1G p G p G p G p N p L p+ −= =  

                          = ( ) ( ) ( )
( ) ( ) ( )

1 2

1 2

E E cosh 2h H Esinh 2h H 1.
E E sinh h H E cosh h H cosh h

⎡ ⎤+ β − + β −⎢ ⎥
⎢ ⎥+ β − + β − β β⎣ ⎦

                                                   (32) 

( )G p±  are asymptotic to constants as p →∞ .      
Now using equations (31) and (32) in (30), we have    

               

( )
( ) ( )

( ) ( )
( )

( )
( )( ) ( ) ( )( )

N N N N N
2 2 2 2

N N

2 p G p p iA cos hG p 2iA sin h
G p M p M p M p p M p G p p

− −− −

+ − − − − +

′φ φ αβ β α β
− + −

−α −α  

               

( ) ( )
( )

( )
( )( )

N N N
2 2

N

M p p iA cos hM p
G p G p p

+ ++

+ +

′φ αβ β
= +

−α                                                                                        (33)                            

We can decompose (33) as 

                 
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
N N N1 N N N1

2 2
N N N

iA cos hG G pA G p iA sin hA
p

M p M p 2 p M M p p
− ++

+
+ + − +

′ ′ β β −α αβ β′φ = − − −
+α −α −α      

                 

( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )

N N N N N

N N i N N i

iA cos hG p M 2iA sin h
2 p M G p p M p M p

+ +

+ + + −

β β α α β
+ −

−α α α −α +α                                           (34) 

where i N tp , p= −α and tp are the roots of ( )G p 0+ = . ( )
( )

t
1

t

2 p
A

M p
−

−

− φ′ = , which is independent of p. 
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( )p−
′φ can be obtained from ( )p+

′φ by changing p to –p and using ( ) ( )p p− +
′ ′φ = −φ . We take the inverse 

Fourier transform of (15) and using (26) to obtain 

                 
( ) ( ) ( ) ( ) ( )1

i
H ipx

1 2 1
i

1x, z E E cosh z H Esinh z H B e dp
2

∞+ η
−β −

−∞+ η

⎡ ⎤φ = + β − + β −⎣ ⎦π ∫                                (35) 

where d d− <η< and 1B can be obtained by differentiating (26) and using (34). 

 

V. REFLECTED AND TRANSMITTED WAVES 
For finding the reflected component we evaluate the integral in (35) along a closed contour in the p-plane. Inside 
the contour, N 2Np ,= ±α ±α are the poles and 1 2p k, k , k= ± ± ± are the branch points. The branch cuts are 
obtained by taking the real parts of 1,ββ and 1δ equal to zero. The contour of integration is shown  in figure 2. 

                                                                 Im (p) 

 
                                                    

                                              Fig. 2. The contour of integration in complex p- plane 

By Cauchy Residue theorem, we have 

                 k k k1 2

i B D

i A C M M M

2 i Res.
∞+ η

−∞+ η

+ + + + + = π∫ ∫ ∫ ∫ ∫ ∫ ∑                                                                           (36) 

where kM ,
1kM and 

2kM  are the branch cuts corresponding to the branch points 1 2k, k , k− − − respectively. 

There is a pole at Np =α and the corresponding wave is given by 

                 ( ) ( ) ( ) ( )N N Ni z H i z H i x1
1 2 1 2

M
E E E e E E E e e

2
β − − β − − α⎡ ⎤′ ′ ′′ ′ ′ ′′− + − + + +⎢ ⎥⎣ ⎦                                                

(37) 

where 

( )( ) ( ) ( )
( )

( )
( )

( )
( )

N N N N N N N N N
1 1 N

N N N N

iA cos hM G iA H M cos h
M A G 1 .

4 G 2M H
+ + −

+
+ −

⎡ ⎤′β β α −α β ±α β −α β⎢ ⎥′= −α − − +⎢ ⎥ ′α α −α ±α⎣ ⎦     
(38) 

Equation (37) gives the transmitted waves in the region x < 0. 
Again, there is a pole at Np = −α and the corresponding wave is given by 

            ( ) ( ) ( ) ( )N N Ni z H i z H i x1
1 2 1 2

M
E E E e E E E e e

2
β − − β − α⎡ ⎤′ ′ ′′ ′ ′ ′′+ − + + +⎢ ⎥⎣ ⎦

                                                         (39) 

Equation (39) gives the waves reflected from the barrier and from the free surface after its reflection from the 
barrier. We see that the reflected and transmitted waves have equal but opposite amplitudes. 

 

-k 

    -k2 
  -k1 

   ( )Im 0β <  ( )1Im 0β >  

Re (p) 
                             A     

 
D 

          C 
     B 
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VI. SCATTERED WAVES 
The incident Rayleigh waves are scattered when these waves encounter with surface irregularities like rigid 
barrier in the surface of a shallow ocean. For finding the scattered component of the incident Rayleigh waves, 
we consider the contribution of the integral along the branch cuts. We find out that  the contribution of the 
integral vanishes along the branch cut kM . On 

1kM , the main contribution comes from the neighbourhood of 

the branch point 1p k= − . We put 1p k it= − − , t being small. Along the cut t varies from 0 to ∞ . 

Now, ( )2 2
1 1 1 1 1k it k i 2k t i′′ ′β = ± + − = ± = ±β  

Integrating (35) along the two sides of branch cut 
1kL , we get 

             
( ) ( ) ( ) ( ){ } 1

1 1

H
1 1 2 1 i

0

iS x,z E E cosh z H Esinh z H B e
2

∞
−β

′β= β

⎡⎡ ⎤= + β − + β −⎢⎢ ⎥⎣ ⎦⎢π ⎣∫                        

                          ( ) ( ) ( ){ } 1

1 1

H tx
1 2 1 i

E E cosh z H Esinh z H B e e dt−β −
′β=− β

⎤⎡ ⎤− + β − + β − ⎥⎢ ⎥⎣ ⎦ ⎥⎦                                     
(40) 

where we have used the result of Ewing et al. [5] i.e. 

           
( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 tx

3 2 5 2 7 2
0

0 3 2 0 5 2 0 7 2
t t e dt ...........

x x x

∞
−

′ ′′ψ Γ ψ Γ ψ Γ
ψ = + + +∫                                      (41) 

Where ( )xΓ  is a Gamma function. By considering h to be small in comparison to H and for small kh , 1k h
etc., we have 

            
( ) ( ) ( ) 1k x

1 3 2

3 2 0
S x, z e

x
′′−Γ ψ

=                                                                                                                (42) 

where 

           

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

2
2 N N N1

1 23 2 2 2 2 1 N 1 NN 11 1 2

k k iA iA hA
0 A .

M k ik Mkik k 2k − −

⎡⎡ ⎤
⎢′′ ⎢ ⎥′λ αβ β⎢ ′⎢ ⎥ψ = − − −⎢⎢ ⎥⎛ ⎞ − ′′α − −α′′′ ′′ ′′ ′′ ⎢ α +⎢ ⎥⎜ ⎟πβ λ −⎜ ⎟ ⎣ ⎦⎣⎝ ⎠

 

                    

( )
( ) ( )

( ) ( )1N
12 2

N 1 N

cosh z h sinh z sinh z M kiA h
A

sinh H cosh Hik M
−

−

⎤⎛ ⎞′ ′ ′ ′ ′ ⎥β β −β β β −⎜ ⎟β′ ⎥+ −⎜ ⎟
′ ′ ⎥⎜ ⎟′′β β⎜ ⎟α − −α ⎥⎝ ⎠ ⎦

 

and ( )
1 22 2

1i k k
⎛ ⎞′ ′′⎜ ⎟β = ⎜ ⎟⎝ ⎠

       

Scattered waves are obtained in (42) which are of the form
1k x

3 2
e
x

′′−
. 

VII. NUMERICAL COMPUTATIONS AND DISCUSSION OF RESULTS 
The incident Rayleigh waves are scattered as well as reflected due to the presence of rigid barrier. The scattered 
wave propagate with a velocity equal to the velocity of the  compressional waves of the solid half space. The 
mathematical calculations have been done by taking 1 1 0.8, 0.6λ ≈μ = λ= for H= 0.5 km, z = 0.01km,

N 0.99α = , k = 1.0, 2k 0.8= , h= 0.05. The graph of amplitude versus the wave number of the scattered waves 
has been plotted in figure 3. The graph indicates that the amplitude of the scattered waves depend on the wave 
number and hence on the wave length of the scattered waves. Also the scattered waves given in equation (42) 

are of the form 
1k x

3 2
e
x

′′−
and they behave as cylindrical waves decaying exponentially for large x. The reflected 

and transmitted waves are respectively given by equations (39) and (37). The graph showing the variation of 
amplitude versus wave number of reflected Rayleigh waves is being plotted by taking the barriers of different 
sizes and is shown in figure 4. 
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For computational and graphical purpose, we have fixed H = 0.5 km and graph has been plotted by taking h = 
0.01, 0.05, 0.10, 0.15, 0.20, 0.25 km. The graph shows that amplitude of the reflected Rayleigh waves falls of 
rapidly as the wave number increases. 
 

 
Fig. 3. Variation of amplitude versus wave number of scattered waves 

 

 

 
Fig. 4. Variation of amplitude versus wave number of reflected waves for different values of h 

VIII. CONCLUSIONS 
The scattered waves given in (42) are dominant near the scatterer and die out exponentially as they move away 

from scatterer. In the free surface (z = 0) the scatterer waves are of the form 
1k x

3 2
e
x

′′−
 both for near and far-off 

points. When h = 0, the scattered waves do not vanish as there is a discontinuity of surface at the point (0, 0). 
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The amplitude of the scattered waves decreases very rapidly with the slower increment in the value of wave 
number which signifies that as the wave number increases, the amplitude decreases at a faster rate but reduces to 
zero after a long time.  The variation of amplitude with the wave number by taking barriers of different sizes 
shows that the behavior of reflected Rayleigh waves depend on the size of irregularity. In particular, this paper 
shows that larger the size of the barrier, larger is amplitude of the reflected Rayleigh waves resulting into more 
energetic reflected Rayleigh waves. This explains why the regions with more irregularities in earth surface face 
frequent earthquake with high intensity. 
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