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Abstract— A new polynomial method to solve Volterra–Fredholm Integral equations is presented in 
this work. The method is based upon Shifted Legendre Polynomials. The properties of Shifted Legendre 
Polynomials and together with Gaussian integration formula are presented and are utilized to reduce the 
computation of  Volterra–Fredholm Integral equations to a system of algebraic equations. Some 
numerical examples are selected to illustrate the proposed method also the theoretical analysis of shifted 
Legendre polynomial method such as convergence and error analysis has been discussed. The results 
demonstrate reliability and efficiency of the proposed method. 

Keyword- Shifted Legendre Polynomials; Nonlinear Integro-Differential equations; Volterra–Fredholm 
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I. INTRODUCTION 
Mathematical modeling of physical phenomena namely fluid dynamics, biological models, chemical 

kinetics and other disciplines lead to linear / nonlinear integro-differential equations. The various types of linear 
/ nonlinear integro-differential equations particularly Fredholm, Volterra, Volterra–Hammerstein, Fredholm-
Volterra, impulse integro-differential equations and singular integro-differential equations with their solution 
methods  are reported in [1-36].   

These methods are divided into two category namely analytical methods and numerical methods. The 
Fourier function [2], Adomian decomposition method [13], Homotopy perturbation method [13,14,18-
20,23,24,27] are some of the analytical methods used to solve the integral equations . The theoretical analysis 
such as convergence and error analysis has been discussed in detailed manner. The numerical methods for 
solving nonlinear integro-differential are Galerkin technique [8,16,23], piecewise interpolation [9], collocation-
type method or iterative method [5-7, 32-35], wavelets [3,4,11,12,29] and other methods [10, 31,36] that 
provide error analysis for particular problem type.  

Recently, Legendre polynomial based methods [37-43]are used to obtain the fast solutions problems of 
science and engineering.  The main characteristic behind in this technique is that it reduces these problems to 
those of solving a system of linear /nonlinear algebraic equations thus greatly simplifying the problem. In this 
Legendre  polynomial method, a truncated orthogonal series is used for numerical integration of differential 
equations, with a goal of obtaining efficient computational solutions. Shifted Legendre polynomial method 
SLPM [44] is the next version of Legendre polynomial with shifting property to shift the interval from [-1, 1] 
into [0, 1]. 

The various applications of shifted Legendre polynomials had been studied by many researchers and several 
papers [44-48] have appeared in the literature, concerned with operational matrix based techniques. Theoretical 
analyses such as error analysis and convergence have also been discussed to demonstrate its potential use.   
       In this paper , we intend to extend the application of  SLPM to find the approximate solution of a nonlinear 
Fredholm–Volterra integral equation[38] 
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where f (x), the kernels K1(x, t) and K2(x, t) are assumed to be in L2(R) on the interval 0 ≤ x, t ≤ 1,  which is the 
general form of  [49,50]. 
       The method consists of expanding the solution by shifted Legendre polynomial with unknown coefficients. 
The properties of shifted Legendre polynomial together with the Gaussian  integration formula [30] are then 
utilized to evaluate the unknown coefficients and we find an approximate solution to Eq. (1).                

This paper is organized as follows. In Section 2, Properties of Shifted Legendre polynomials are 
discussed. Section 3 explains the solution of the nonlinear Volterra–Fredholm integral equation and Section 4 
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and 5 provide the convergence and error analysis of SLPM. In Section 6, we demonstrate the accuracy of the 
proposed scheme by considering numerical examples. The salient features of SLPM and concluding remarks are 
discussed in Section 7 and 8 respectively.  

II. SHIFTED LEGENDRE POLYNOMIALS AND ITS PROPERTIES 
In this section, we discuss Legendre polynomials and its function approximation[37-43]. 

A.  Legendre polynomials 

The Legendre polynomials are defined on the interval [-1, 1] and can be determined with the aid of the 
following recurrence formulae: 
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B. Shifted Legendre polynomials 
 In order to use these polynomials on the interval ]1,0[∈x , recently  Saadatmandi [44] utilized the so-called 
shifted   Legendre polynomials by introducing the change of variable 12 −= xz . 

 Let the shifted   Legendre polynomials )12( −xLi  be denoted by )(xPi . Then )(xPi  can be obtained as 
follows: 
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where 1)(0 =xP and .12)(1 −= xxP The analytic form of the shifted   Legendre polynomial )(xPi of degree 
i given by 
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Note that i
iP )1()0( −= and .1)1( =iP  The  orthogonality condition is  
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A function y(x), square integrable in [0,1], may be expressed in  terms of shifted   Legendre polynomials as 
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C.  Function approximation 
In practice, only the first (m+1) terms of shifted Legendre polynomials are considered. Then we have 
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    where the shifted Legendre coefficient vector C and the shifted Legendre vector )(xΦ  are given by  
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III. SOLUTION OF THE NONLINEAR VOLTERRA–FREDHOLM INTEGRAL EQUATIONS 
Consider the nonlinear Volterra–Fredholm integral equations given in Eq. (1). In order to use Legendre 
polynomials, we first approximate y(x) as 

)()( xCxy T Φ= ,                                                                                                                                            (7)                                 

  From Eqs. (1) and (7) we have  
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We now collocate Eq.(8) at m+1 points xi as 
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Suitable collocation points are zeros of Chebyshev polynomials [30] 
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In order to use the Gaussian integration formula for Eq. (9), we transfer the t-intervals [0,xi] and [0, 1] into τ1 
and τ2 intervals [−1, 1] by means of the transformations 
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Eq. (9) may then be restated as 
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where τ1j and τ2j are s1 and s2 zeros of Legendre polynomials 11 +sP and 22 +sP respectively , and w1j , w2j are the 
corresponding weights given in [12].  
The idea behind the above approximation is the exactness of the Gaussian integration formula for polynomials 
of degree not exceeding 11

2 +s and 22
2 +s . Eq. (10) gives M+1 nonlinear algebraic equation which can be 

solved for the elements of TC  in Eq. (7) using Newton’s iterative method. 

IV. CONVERGENCE ANALYSIS  

Theorem 4.1: Convergence theorem 

The series solution Eq.( 5)  of  Eq. (1) using SLPM converges towards y(x). 

Proof: 

Let L2(R) be the Hilbert space and  2
0 )!()!(

)!()1()(
k

x

ki

ki
xP

ki

k

ki
i 

=

+

−
+−=  

Let ( ) ( )
=

=
m

j
jj xPcxy

0
 

where ( ) ( ) ( )+=
1

0

12 dxxPxyjc jj ( ) ( ) ( )xPxyjc jj ,12 +=  

where .,. represents an inner product. 

( ) ( ) ( ) ( ) ( )
=

+=
n

i
jj xPxPxyjxy

1
,12   

where j=1,2,3, … 
Let ( ) ( )xPxy jj ,=α   

K. Krishnaveni et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1476



Define the sequence of partial sums {Sn} of ( )( )xPjjα ; let Sn and Sm be arbitrary partial sums with .mn≥  
We are going to prove that {Sn} is a Cauchy sequence in Hilbert space. 
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Hence ( ) sxy = and ( )
=

m

j
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0
converges to y(x) and this completes the proof.  As the convergence has been 

proved, consistency and stability are ensured automatically. 

V. ERROR ANALYSIS  

     In this part, an error estimation for the approximate solution of Eq.(1) is discussed. Let us consider 
( ) ( ) ( )xyxyxen −=  as the error function of the approximate solution ( )xy for ( )xy , where ( )xy  is the 

exact solution of Eq.(1). 
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We proceed to find an approximation ( )xen  to the error function ( )xen  in the same way as we did before for 

the solution of the problem. Subtracting Eq. (12) from Eq. (11), the error function ( )ten  satisfies the problem. 
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It should be noted that in order to construct the approximate ( )xen  to ( )xen , only Eq. (13) needs to be 
recalculated in the same way as we did before for the solution of Eq.(11). 

VI. IIUSTRATIVE EXAMPLES  

In this section, we examine the performance of SLPM with some examples.  
Example 1 
Consider the nonlinear Volterra–Fredholm integral equation given in [38] by 
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We apply the method presented in this paper and solve Eq.(14) with m=3 we get 
the following algebraic equations 
(1/2)c0 – (7/6)c1 + c2-c3=-(5/4) 
-c0+2c1 – 6c2+12c3=(5/3) 
(1/2)c0

2
 +(1/2) c1

2
 +(1/2)c2

2+(1/2)c3
2 –c0c1+c0c2-c0c3-c1c2+c1c3-c2c3-6c2+30c3=1 

(-2/3)c1
2-2c2

2-4c3
2+(2/3)c0c1-2c0c2+4c0c3+(8/3)c1c2-(14/3)c1c3+6c2c3-20c3=0 

From these equations we find  c0 = -1.6667, c1 = 0.5,c2 =0.1667, c3 =0 and  
y(x)=c0 0p  +c1 1p +c2 2p +c3 3p = x2-2, which is the exact solution. 

Example 2 
Consider the nonlinear Volterra integral equation given in [38] by 
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We apply the method presented in this paper and solve Eq.(15) with m=2 we get the following algebraic 
equations; 
c0 – c1 +c2=1 
c0

3-c1
3+c2

3–3c0
2c1+3c0c1

2+3c1
2c2-    

3c1c2
2+3c0

2c2+3c0c2
2-6c0c1c2-2c1+6c2=0 

3c1
3-9c2

3+3c0
2c1-6c0c1

2-15c1
2c2+21c1c2

2-9c0
2c2- 
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18c0c2
2+24c0c1c2 -6c2=1 

From these equations we find c0 = 1.6667, c1 = 0.75, c2 =0.0833 and y(x) = 
2

1
2x

x ++  

The closed solution of y(x) = xe  which is the exact solution for larger values of m.  TABLE 1 shows the error 
for example 2 for different values of m with exact solution.       

TABLE 1 
The errors for Example 2 at m=4,10,15 

m X Exact SLPM Error 
4 0 1 1 0 

0.2 1.221403 1.2213 0.0001027 

0.4 1.491825 1.4907 0.0011246 
0.6 1.822119 1.816 0.0061188 
0.8 2.225541 2.2053 0.0202409 

1 2.718282 2.6667 0.0512818 
10 0 1 1 0 

0.2 1.221403 1.2214 0.0000027 
0.4 1.491825 1.4918 0.0000246 
0.6 1.822119 1.8221 0.0000188 
0.8 2.225541 2.2255 0.0000409 

1 2.718282 2.7183 -0.0000182 
15 0 1 1 0 

0.2 1.221403 1.2214 0.0000027 
0.4 1.491825 1.4918 0.0000246 
0.6 1.822119 1.8221 0.0000188 
0.8 2.225541 2.2255 0.0000409 

1 2.718282 2.7183 -0.0000182 
              
Example 3 
Consider the Integro-differential equation[51]   

1
3
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    We apply the method presented in this paper and  
solve Eq.(16) with m=3  

(ie) 
=

=
3

0

)()(
j

jj xPcxy  we get the following algebraic equations 

c0 – 3c1 + 7c2-13 c3=-1 
(1/2) c0 + (13/6)c1 – 18c2+72 c3=(4/3) 
6c2-90c3=0 
and from the initial condition y(0)=0, we have   c0 - c1 + c2 -c3=0 
From these equations we find c0 = 0.5, c1 = 0.5, c2 = 0, c3 = 0. 

Using Eq. (6) we get y(x)=c0 0p  +c1 1p +c2 2p +c3 3p = x,   which is the exact solution. 

Example 4 

Consider the Integro-differential equation  [51] 

K. Krishnaveni et al. / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 2 Apr-May 2013 1479



xexydssyxxy x −++= 
1
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We apply the method presented in this paper and solve Eq.(17) with m=3 we get 
the following algebraic equations 
c0 - c1 + c2- c3=0 
c0 – 3c1 +7c2-13c3=-1 
c0 +2c1 -18c2+72c3=0 
6 c2 -90c3=-(1/2) 
From these equations we find c0 = 0.9474, c1 = 1.2079, c2 = 0.2851, c3 = 0.0246.  

The closed solution of y(x) = xxe  which is the exact solution for larger values of m. .  TABLE 2 shows the 
error for example 2 for different values of m with exact solution.       

TABLE 2 
The errors for Example 4 at m=4,10,15 

m X Exact SLPM Error 
4 0 0 0 0 

    0.2     0.244281           0.244      2.81E-04 
0.4 0.59673 0.592 4.73E-04 
0.6 1.093271 1.068 0.02527 
0.8 1.780433 1.696 0.08443 

1 2.718282 2.5 0.21828 
10 0 0 0 0 

0.2 0.244281 0.2443 -2E-05 
0.4 0.59673 0.5967 3.00E-10 
0.6 1.093271 1.0933 1.77E-08 
0.8 1.780433 1.7804 3.21E-07 

1 2.718282 2.7183 -1.8E-05 
15 0 0 0 0 

0.2 0.244281 0.2443 -2E-05 
0.4 0.59673 0.5967 2.98E-05 
0.6 1.093271 1.0933 -2.9E-05 
0.8 1.780433 1.7804 3.27E-05 

1 2.718282 2.7183 -1.2E-05 
Example 5 

Consider the Integro-differential equation[51]   

 −+=
x

dttyxtxxy
0

)()()(                                 (18)                                                                        

We apply the method presented in this paper and solve Eq.(18) with m=3 we get 
the following algebraic equations 
c0 - c1 + c2-c3=0 
2c1 – 6c2+12 c3=1 
(-1/2)c0 +(1/2) c1  -(13/2)c2+(61/2)c3=0 
(1/3) c1 - c2+22c3=0 
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From these equations we find c0 = 0.4583, c1 = 0.4250, c2 =-0.0417, c3 =-0.0083.and y(x) =  
6

3x
x − . The closed 

solution of y(x) = sin x, which is the exact solution for larger values of m and it has been depicted 
in Fig 1. 

 
Fig 1: SLPM solution of Example 5 for different values of m 

Example 6 
Consider the nonlinear boundary value problem for the integro-differential equations related to the Blasius 
problem [49]. 

0,)('')(
2
1)(''

0

<<∞−−=  xdttytyxy
x

α   

                                                                           (19)  

subject to the boundary conditions ( ) ( ) 10,10 ' == yy and −∞→= xwhenxy 0)('  

We solve (19) with m=6.  
y(x)=c0 0p +c1 1p +c2 2p +c3 3p      

      = 5242

240
1

48
1

2
1

xxxx ααα −−+ +…  which is the exact solution reported in [49]  

VII. SALIENT FEATURES  
The proposed method is very simple in application and SLPM the solution can be obtained in bigger 

interval. Unlike Adomian Decomposition Method(ADM), Homotopy Analysis Method(HAM) and Homotopy 
Perturbation Method(HPM), the SLPM do not require the Adomian polynomials, Lagrange multiplier, 
correction functional, stationary conditions and calculating integrals, which eliminate the complications that 
exists in the ADM, HAM and MHPM. 
     The solution obtained by means of SLPM is an infinite power series for appropriate initial approximation, 
which can be, in turn, expressed in closed form of exact solution. i.e. the infinite series solution is obtained for 
each problem by increasing the value of m, which in turn converges to closed form of exact solution, the error 
tends to zero and ensures stability. 
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VIII. CONCLUSION 
In this work, we have proposed the shifted Legendre polynomials method (SLPM) for Solution of thelinear 

and nonlinear Volterra-Fredholm integral equations. The properties of shifted Legendre polynomials are used to 
reduce the problem to the solution of algebraic equations with appropriate coefficients which provide exact 
solutions for all the chosen problems. Moreover, the convergence analysis, error estimations clearly reveal its 
validity and potential use of applicability to any phenomena governed by this equation. In future, we may use 
this proposed method for solving other non linear fractional integro-differential equations and fractional partial 
differential equations also. 
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