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Abstract — Voice plays a vital role in distant communications like video conferencing, teleconferencing 
and hands free mobile conversion etc. Here, the quality of speech is degraded by the Cocktail party 
problem. Cocktail party problem is described as combination of various sources of speech signal received 
by a microphone. Solution for the above problem can be obtained by using Independent component 
Analysis (ICA), which has the ability to separate multiple speech signals into individual ones. This paper 
deals with application of principle of negentropy from maximization of non-gaussianity technique of ICA 
using Gradient and Fast ICA algorithm. The results in Matlab show that Fast ICA provides better 
execution time compared with gradient with minimum number of iteration.    

Keyword - ICA, Negentropy, Fast ICA, Gradient, Maximization of non-gaussianity. 

I. INTRODUCTION 
Imagine that two people speaking simultaneously are recorded using two microphones placed in different 
positions of the room. The microphones give two recorded signals x1(t) and x2(t) with x1 and x2 amplitudes, and t 
the time index. Each of the recorded signal is the linear combination of the two speech signals emitted by the 
speaker is denoted by s1(t) and s2(t) [1]. So we could express this linear equation as 

x1(t) = a11s1+a12s2                                                                         (1) 
x2(t) = a21s1+a22s2                                                                         (2) 

Where a11, a12, a21, a22 are the parameters that depend on the distances of the microphones from the speakers. 
Here the source signals s1 and s2 is estimated from the mixed signals x1 and x2 using Independent component 
analysis. This is known as blind source separation. In this process the mixed signals are obtained from 
statistically independent and non-Gaussian source signals. For simplicity we assume the unknown mixing 
matrix A, as the square matrix. The estimated source signals could be obtained up to their permutation, sign, and 
amplitude only that is their order and variance cannot be obtained with independent component analysis. 
 In recent years, Researchers had proposed many criterions, Minimization of Mutual information have 
been used to estimate source signals using Independent component analysis. In those maximization of non-
Guassianity gives the better performance. There are two techniques in maximizing non-guasianity, they are 
using kurtosis and negentropy. In which negentropy is more reliable as kurtosis is most sensitive to outliers and 
computationally robust process. 
In this paper, we estimated the source signals using Independent component analysis [2] by maximizing 
negentropy. The maximization of negentropy can be done using two algorithms (Fast ICA and gradient).  To 
estimate the source signals the demixing matrix is estimated. The fundamental restriction in ICA [3] is that the 
independent components are non-guassian in nature. To see why gaussian variables make ICA impossible, 
assume that the signals are Gaussian and mixing matrix is orthogonal. Then x1 and x2 are Gaussian, uncorrelated, 
and of unit variance. Their joint density is given by 

          

2 21 1 2( , ) exp( )1 2 2 2
x x

p x x π
+

= −                           (3) 

This distribution is illustrated in Fig 1. The Figure 1 shows that the density is completely symmetric. So, it does 
not contain any information on the directions of the mixing matrix.  
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Fig. 1. Multivariate distribution of two independent Gaussian variables 

To estimate one of the independent components, consider a linear combination of the xi let us denote this by  

        

T
t t

t

y w x w x= =
                   

                    (4) 

where w is a vector to be determined. If w were one of the rows of the inverse of A, then the linear combination 
will equal one of the independent components. So determine such a w (i.e inverse of A) without knowledge of A 
matrix is not practical, but we can find an estimator that gives good approximation. To see how this leads to the 
basic principle of ICA estimation, let us make change of variables, defining 

            
Tz A w=                                                           (5) 

                                                      
T Ty w As z s= =  

y is thus a linear combination of si, with weights given by zi. Since a sum of even two independent random 
variables is more gaussian than the original variables, Tz s  is more gaussian than any of the si and becomes least 
gaussian when it in fact equals one of the si. In this case, only one of the elements zi of z is nonzero. Therefore, 
we could take as w a vector that maximizes the non gaussianity of Tw x [4]. Such a vector would necessarily 

correspond to a z which has only one nonzero component. This means that T Tw x z s=  equals one of the 
independent components. Maximizing the non gaussianity of Tw x  thus gives us one of the independent 
components. To find several independent components, we need to find all the local maxima. Its not difficult, 
because different independent components are uncorrelated. This corresponds to orthogonalization in a suitably 
transformed (i.e. whitened) space. 

II. EVALUATION OF INDEPENDENT COMPONENTS BY MAXIMIZING A QUANTITATIVE MEASURE OF NON-
GAUSSIANITY 

Two quantitative measures of non-gaussianity are used in ICA estimation are kurtosis and negentropy. 
A. Negentropy 

Negentropy is based on the information-theoretic quantity [5] of differential entropy, which we here call simply 
entropy. The more “random”, i.e., unpredictable and unstructured the variable is, the larger its entropy. The 
(differential) entropy H of a random vector y with density ( )yp η is defined as          

( ) ( ) log ( )y yH y p p dη η η= −                           (6) 

Gaussian variable has the largest entropy among all random variables. This means, entropy could be used as a 
measure of nongaussianity. Negentropy J is defined as follows 

( ) ( ) ( )gaussJ y H y H y= −                         (7) 

Where gaussy is a Gaussian random vector of the same covariance matrix as ‘y’. Negentropy, or negative 
normalized entropy, is always non-negative, and is zero if and only if ‘y’ has a Gaussian distribution. 
Negentropy can be done using two algorithms as stated above.  To make computation easy we center the data to 
make mean zero and then we go for whitening process to make uncorrelated data with variance one. The  
whitening process is done by eigen value decomposition method. 

~ 1
2 Tx ED E x

−
=                                                           (8) 
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The estimation of negentropy is difficult, as mentioned above, and therefore this contrast function remains 
mainly a theoretical one. The classical method of approximating negentropy is using higher-order moments,  

3 2 21 1( ) { } ( )
12 48

J y E y kurt y≈ +                    (9) 

 The random variable y is assumed to be of zero mean and unit variance. In particular, these approximations 
suffer from the no robustness encountered with kurtosis. To avoid the problems encountered with the preceding 
approximations, new approximations were developed. These approximations were based on the maximum-
entropy principle. In general we obtain the following approximation 

2

1
( ) [ { ( )} { ( )]

p

i i i
i

J y k E G y E G v
=

≈ −                   (10)
 

Where ik  are positive constants, and v is a gaussian variable of zero mean and unit variance 

B.  Negentropy based fixed point algorithm 

A much faster method for maximizing negentropy [6] is done using fixed-point algorithm. The 
resulting FastICA algorithm finds a direction, i.e., a unit vector w, such that the projection Tw z maximizes non-
gaussianity.  Non-gaussianity is here measured by the approximation of negentropy. 

FastICA is based on a fixed-point iteration for finding a maximum of the nongaussianity of Tw z . The 
FastICA algorithm using negentropy combines preferable statistical properties due to negentropy. The fixed 
point iteration can be approximated as follows: 

{ ( )}Tw E zg w z←                                          (11) 

The above iteration does not have the good convergence properties of the FastICA using kurtosis, because the 
non polynomial moments do not have the same nice algebraic properties as real cumulants like kurtosis. So the 
modified iteration process can be as below, 

{ ( )} (1 ) { ( )}T Tw E zg w z w E zg w z wα α← ⇔ + = +          (12) 

Due to the subsequent normalization of w to unit norm, the latter equation gives a fixed-point iteration 
that has the same fixed points. So choice of α is more useful, it may be possible to obtain an algorithm that 
converges as fast as the fixed-point algorithm using kurtosis. So the algorithm can be further simplified as 

{ ( )} { '( )}T Tw E zg w z E g w z w← −              (13) 
 

Step wise procedure for Fast ICA Negentropy [7] 
1. Center the data to make its mean zero. 
2. Whiten the data to give z. 
3. Choose an initial vector w of unit norm. 
4. Let { ( )} { '( )}T Tw E zg w z E g w z w← − , where g is defined as 

1
2

2

( ) tanh( )

( ) exp( )2

g y y

yg y y

=

−=
 

5. Let /w w w←  
6. If not converged, go back to step 4. 

C. Negentropy based gradient algorithm[8] 

A simple gradient algorithm can be derived as, Taking the gradient of the approximation of negentropy with 

respect to w, and taking the normalization 
22{( ) }TE w z w I= = into account, we can obtain the following 

algorithm,        
{ ( )}Tw E zg w zγΔ ∝                                         (14) 

/w w w←                                                      (15) 

Where [ { ( )} { ( )}]TE G w z E G vγ = − , v  being any Gaussian random variable with zero mean and unit 

varience. The normalization is necessary to project w on the unit sphere to keep the variance of Tw z constant. 
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The parameter γ , which gives the algorithm a kind of “self-adaptation” quality, can be easily estimated as 
follows 

[ { ( )} { ( )}]TE G w z E G vγ γΔ ∝ − −            (16) 

Step wise procedure for gradient negentropy: 
1. Center the data to make its mean zero. 
2. Whiten the data to give z. 
3. Choose an initial vector w of unit norm, and an initial value for γ . 

4. Update ( )Tw zg w zγΔ ∝ , where g is defined as in above algorithm. 

5. Normalize /w w w←  

6. If the sign of γ  is not known a priori, update [ { ( )} { ( )}]TE G w z E G vγ γΔ ∝ − − . 

If not converged, go back to step 4. 
D. Deflamationary orthogonalisation 

By the above process we will estimate only one independent component [9] and to estimate all the 
components we have to run the process several times which is not reliable one so we use an algorithm known as 
deflamationary orthogonalisation which works on the property of orthogonalisation. Orthogonality is described 
as  Non overlapping or uncorrelated. So, by this property we will find out the orthogonal demixing matrices and 
with these matrices we will estimate the corresponding independent components. 
Deflamationary orthogonalisataion means finding w matrix which are orthogonal to each other. After estimating 
the w matrix using one unit algorithm for the first time, we have to run the whole one unit algorithm for 
estimating the other w matrix which is orthogonal to the first estimated w matrix. 

III. SIMULATION 
A. Results 

In this simulation two source signals Male and Female voices which are recorded from external sources 
are used. Then the signal ‘S’ is produced by adding the two source signals. Now this signal is multiplied with 
random matrix to get a mixed signal ‘X’. The whitened signal is obtained when the mixed signal is done through 
the whitening process. The sample length of mixed signal X and estimated independent components are both of 
same order in the simulation. 

Fig. 2 and Fig. 3 are the two source signals (male and female voices respectively). Fig. 4 is the mixed 
signal X, Fig. 5 is the whitened signal. Now the demixing matrix is found by using any one of the one unit 
algorithm as explained above. 
After the completion of the one unit algorithm we get one of the source signal as separated signal. 

 
Fig. 2.  S1-Male voice signal 

 
Fig. 3.  S2-Female voice signal 
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Fig. 4.  S- Mixed voice signal 

 
Fig. 5.  Y- Whitened voice signal 

2 

 
Fig. 6.  S2 Separated Female voice signal from Mixed voice signal 

By using deflamationary orthogonalisation S1 separated male voice signals are estimated after one unit 
algorithm 

 
Fig. 7. Separated signal male voice signal from mixed voice signal 

In the next simulation two standard signals are used as source signals, such as chirp and gong. Then the signal 
‘S’ is produced by adding the two source signals. Now this signal is multiplied with random matrix to get a 
mixed signal ‘X’. The whitened signal is obtained when the mixed signal is done through the whitening process. 
The sample length of mixed signal X and estimated independent components are both of same order in the 
simulation. 
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Fig.8 and  Fig. 9, are the two source signals (chirp and gong signals respectively). Fig.10 is the mixed 
signal X. Now the demixing matrix is found by using any one of the one unit algorithm as explained above. 
After the completion of the one unit algorithm we get one of the source signal as separated signal which as 
shown in Fig.11 and Fig.12. 

 
Fig .8  P1-Standard Chirp signal 

 
Fig. 9  P2-Standard Gong signal 

 
Fig. 10.  P- Mixed of Chirp and Gong signal 

 
Fig. 11.  P2 Separated Gong signal from Mixed signal P 

By deflamationary orthogonalisation other signals are estimated after one unit algorithm. 

 
Fig. 12.  P1 Separated Chirp signal from Mixed signal P 
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B.  Comparison between Fast ICA and Gradient Negentropy 

Here we have calculated the execution time and the amount of error signal in terms of correlation coefficient 
present in the separated signal (i.e., the amount of the other source signal present in the ‘separated signal’ when 
one source signal is separated) for many number of observations and took an average of the observations and 
compared for Gradient and Fast ICA algorithms [10] 
Correlation coefficient can be calculated using the equation 

          ),(var),(var/),(var),( YYianceCoXXianceCoYXianceCoYXCorrcoef =              (17)        

When the correlation coefficient reaches 1 then the two signals are highly correlated. When the value of 
correlation coefficient reaches nearly zero then there is no correlation between the two signals. 

Table I. Performance of Male and Female voice separation in Fast ICA and Gradient Algorithm 

Table II. Performance of Chirp and Gong signal separation in Fast ICA and Gradient Algorithm 

From the above Table I and Table II we observed the Fast ICA provides better execution time compared to 
gradient with minimum no of iteration. Gradient ICA provides lesser values for correlation coefficients, which 
indicates that there is no correlation between separated signal with other signal   

IV. CONCLUSION 
This paper shows that Gradient based negentropy algorithm provides higher efficiency in separating speech 

signals compared with Fast ICA based negentropy algorithm.  Fast ICA needs less execution time as compared 
to gradient based negentropy with minimum number of iterations. 
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Algorithm 
for 

negentropy 

Male voice (S1) separated  from the mixture S Female voice (S2) separated  from the 
mixture S 

Correlation 
Coefficients 
between  S1&S2 

Average 
Execution 
time (sec) 

No of 
iterations 

Correlation 
Coefficients  
between  S1&S2 

Average 
Execution 
time (sec) 

No of 
iterations 

 
FAST ICA 
 

 
0.0064 

 
0.245 

 
7 

 
0.0069 

 
0.252 

 
6 

 
GRADIENT 
 

 
0.0009 

 
0.673 

 
12 

 
0.0011 

 
0.661 

 
11 

Algorithm 
for 

negentropy 

Chirp signal (P1) separated  from the mixture 
P 

Gong signal (P2) separated  from the 
mixture P 

Correlation 
Coefficients 
between  P1&P2 

Average 
Execution 
time (sec) 

No of 
iterations 

Correlation 
Coefficients  
between  P1&P2 

Average 
Execution 
time (sec) 

No of 
iterations 

 
FAST ICA 
 

 
0.0039 

 
0.142 

 
6 

 
0.0042 

 
0.165 

 
5 

 
GRADIENT 
 

 
0.0011 

 
0.673 

 
10 

 
0.0021 

 
0.595 

 
10 

K. Mohanaprasad et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 4 Aug-Sep 2013 3202


	Comparison of Fast ICA and GradientAlgorithms of Independent ComponentAnalysis for Separation of Speech Signals
	Abstract
	Keyword
	I. INTRODUCTION
	II. EVALUATION OF INDEPENDENT COMPONENTS BY MAXIMIZING A QUANTITATIVE MEASURE OF NONGAUSSIANITY
	III. SIMULATION
	IV.CONCLUSION
	REFERENCES




