
ASIC Implementation of Low Power Area
Efficient Folded Binary Comparator

N.Saravanakumar#1, A. NirmalKumar*2, A.Nandhakumar#3, G.E.KanyaKumari#4
Department of Electrical and Electronics Engineering,

Bannari Amman Institute of Technology, Sathyamangalam, Tamilnadu, India
1 sarapalani81@gmail.com

3 nandhakumarme@gmail.com
4 kanyakumarige@bitsathy.ac.in

* Karpagam College of Engineering
Coimbatore, Tamilnadu, India

2 ankhod@gmail.com

Abstract—ASIC implementation of a parallel binary comparator based on radix-2 tree structure,
utilizing Carry Look Ahead (CLA) technique is proposed in this brief. This novel comparator
architecture achieves both low power and high-speed operation, particularly at low-input data activity
environments. The proposed comparator is designed using VHDL code and synthesized using ALTERA
QUARTUS - II. Experimental evaluation of the proposed and state of-the-art designs revealed that the
proposed comparator design exhibits a reduction in delay by 49.8% and gate count by 42.6% for a 16 bit
design, compared to the best of the schemes used for comparison.

Keyword - Binary comparator Digital Arithmetic, Tree Structure, Carry Look Ahead, Priority
encoding.

I. INTRODUCTION
 A digital comparator or magnitude comparator is a hardware electronic device that has two binary inputs,

and determines whether one number is greater than, less than or equal to the other number. The comparators are
widely used in Central Processing Units (CPUs), Micro Controller Units (MCUs) which is a crucial data path
element of image and signal processing architectures. In the last few years, the design of high-speed and low-
power binary comparators has received a great deal of attention.

Several comparator designs are proposed to date include: High speed comparator [1], adder based comparator
[3], Priority Encoder (PE) based comparator [2] [4], BCL (Bitwise Competition Logic) comparator [6] etc…The
comparator by Wang et al. [1] performs high speed comparison using All N Transistor (ANT). Power
dissipation and area of this design is relatively large and is also not suitable for single cycle operation. Huang
and Wang [2] and Lam and Tsui [4] designs use priority encoding algorithm for bit comparison. The elimination
of long dynamic chain in these designs reduces delay compared to design in [1]. However the power dissipation
of the PE based designs [2], [4] is high due to large switching, as the number of execution steps is more.
Comparator by Stine and Schulte [3] uses hierarchical prefix tree structure which reduces delay and improves
the scalability up to 2 bit comparison. However cascading of larger bit widths increase area and delay.

A MUX based comparator using Most Significant Bit (MSB) checking is proposed by Lam and Tsui [5].
Though the power dissipation of the Lam and Tsui design is low, the hardware complexity and delay are high.
In another novel design, Kim and Yoo [6] used bitwise computation logic after pre encoding to find the first ‘1’
away from MSB. Perri and Corsonello [7] and Frustaci et al [8] proposed tree based structure for binary
comparison. Though the computation speed of tree based structures in [7] and [8] is high, an implementation in
static logic is not possible and their Vdd/Vt ratio is less. Krishna raj et al [9] designed a comparator using
redundant binary signed digit number. The design demonstrates better delay reduction and is suitable for large
operand comparison. Sharma et al.,[10] proposed a comparator design utilizing both PTL and CMOS logic . The
hybrid comparator derives the advantages of both the logic and exhibit less power dissipation. Saleh Abdel-
Hafeez [11] proposed scalable architecture for binary comparison. Though the design in [11] demonstrate better
critical delay reduction, it is prone to high leakage power dissipation.

The comparator designs mentioned in the literature show better performance in terms of delay reduction but
dissipate high dynamic power. On the other hand static designs exhibit less dynamic power dissipation
compared to dynamic designs [12]. As the stack height of transistors grows exponentially with the number of
variables in static logic, the designs mentioned in the literature are not suitable for static logic implementation.
Also, higher stack height is less attractive in deep sub micrometer process, where the Vdd/Vt ratio is lower. So in
this brief we propose a folded tree based comparator suitable for static logic implementation with reduced
transistor stack height.

N.Saravanakumar et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 6 Dec 2013-Jan 2014 4582

The rest of this paper is organized as follows: Section II gives a brief description of the existing comparator
designs. Section III discusses the methodology involved in the proposed comparator. An illustration for the
proposed comparator is given in section IV. Mathematical analysis of switching in the proposed binary
comparator is given in section V. Experimental evaluation of the proposed comparator is discussed in section
VI. An implementation of the proposed comparator in factorial calculator is discussed in section VII. A brief
conclusion of the work done is given in Section VIII.

II. EXISTING TREE BASED BINARY COMPARATOR DESIGNS
Tree-based comparators are proposed by Perri and Corsonello [7] and Chuang et al [12] are suitable for static

logic implementation which reduces dynamic power dissipation. The design in [7] uses CLA principle to find
the greater of the two inputs. For 2 bit binary inputs A[1:0] and B[1:0], the addition of A and 2’s complement of
B generates a carry equal to “1” if A is greater than or equal to B and generates carry equal to “0” if B is greater
than A. For cases where carry out is equal to ‘1” an additional examination is required to find whether A is
greater than B or A is equal to B. This indeed requires an additional output which is an EXOR operation on
inputs bit by bit. The comparator design in [12] also uses CLA technique where 2 indices “BBIG” and “EQ” are
generated to compare the inputs. “BBIG , EQ” is “1,0” if B is greater than A, “BBIG , EQ” is “0,0” if A is greater
than B and “BBIG , EQ” is “0,1” if B is equal to A. However the above tree based comparators occupy large area
since for 64 bit binary inputs A [63:0] and B [63:0], they require 32 CLA units for carry generation and 32
equality checking blocks. This indeed occupies huge area and increases hardware complexity. To overcome this,
we separate the binary inputs into groups called digit sets and perform comparison within digit sets starting from
MSB. The checking of all the digit sets is done by a single pre-processing and encoding block where the
different digit sets are time multiplexed on these units.

III. PROPOSED BINARY COMPARATOR
The proposed Area Efficient Folded Binary Comparator (AEFBC) consists of Pre-computation unit and

Encoder block. The basic principle of AEFBC is to group the binary inputs into digit sets (digit size = word
size/m, m being the number of digits formed). The digit sets are send to the precomputation unit starting from
Most Significant Digit (MSD) to check for equality and the computations in precomputation unit are stopped at
the first digit set which produces a “1” output. The corresponding digit set is send to the CLA encoder block to
find the greatest of the two inputs. Thus, the proposed design avoids unnecessary checking of all the bits in the
input. This reduces switching and huge dynamic power dissipation. Figure 1 shows the block diagram of the
proposed AEFBC.

N.Saravanakumar et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 6 Dec 2013-Jan 2014 4583

Fig.1 Block diagram of AEFBC

A. Pre – Computation Unit

The IB stores the two binary inputs. Based on the digit size the counter value is initialized. For each tick of
the counter the bits are shifted into the Digit Buffer (DB) from the IB. The required number of bits are shifted
into the DB when the counter output reaches “0”.

The pre-computation unit performs EX-OR operation on bits in DB starting from Most Significant Bit (MSB).
The EX-OR outputs are OR ed to find the equality within digits. If two digit sets are equal the ORed output will
be zero and the next digit set will be passed to the DB for comparison. In case of unequal digit sets, ORed
output will be “1”, then the computations in the pre-computation block are stopped and the corresponding digit
sets are send to the encoder block to determine the greatest of the two. On the other hand, if the output EX-OR
is zero for all digit sets, then the input word is considered to be equal which can be realized by a “1” output at
“EQ”.
B. Encoder Block

The encoder block of the proposed comparator uses carry generation equation of CLA addition [12] to find
the greatest among the two inputs. For a 2-bit digit (A1A0 and B1B0), comparison can be realized with the
following Equation proposed by Chaung et al [12].

() ()() ()B = not A B + not A XOR B notA B 1 GR 1 1 1 1 0 0

This is similar to the carry generation of a CLA adder given by

()C = G + PC 2 out in

which can be written as

()C = G + P G 3 out i i i-1

where Cout is equal to BGR , Generate ’Gi’ is equal to ‘not(Ai)Bi’ , ‘Pi’ is equal to ‘not(Ai XOR Bi)’.
BGR will be equal to “1” when the digit set BDS(BiBi-1) is greater than digit set ADS(AiAi-1) and BGR will

be equal to “0” if the digit set BDS(BiBi-1) is less than digit set ADS(AiAi-1).

N.Saravanakumar et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 6 Dec 2013-Jan 2014 4584

For digits having more than two bits, the encoding operation is performed on 2 bits at a time starting from
the MSB. The Cout s generated are ORed to find TCout. If TCout is equal to “1” then “B” is greater than “A” else
“A” is greater than “B”. The comparison done here is mainly based on radix-2 tree stucture since two bits are
compared at a time.

IV. ILLUSTRATION OF THE PROPOSED METHOD
Consider two binary inputs A and B where

A = 10110110
B = 10111010

Case 1: 2 bit digit set grouping
 Here A and B are grouped and compared as follows.

Digit set A = 10 | 11 | 01 | 10
B = 10 | 11 | 10 | 10

Precomputation
 unit output “S”

 0 0 1

Encoder input 01
 10

Encoder output
“BGR” 1 B greater than

A

Case 2: 4 bit digit set grouping
 Here A and B are grouped and compared as follows.

Digit set A = 1011 | 0110
B = 1011 | 1010

Precomputation
 unit output “S”

 0 1

Encoder input 01 | 10
 10 | 10

Encoder output
“Cout” 1 0

Encoder output
“BGR” 1 B greater than

A

V. MATHEMATICAL ANALYSIS OF SWITCHING IN THE PROPOSED BINARY COMPARATOR
Let A [7:0] and B [7:0] be the inputs of the binary comparator, n – the number of bits in input (here n = 8), d

– the number of bits in digit (here d = 2), i – the position of digit from MSB. The numbers of switching in the
proposed and conventional comparator are analysed as follows.
Case i: 8 bit input with 1st digit not equal
If MSD1 of A: 00

a) A: 00 A[5]A[4] A[3]A[2] A[1]A[0]
 B: 01 B[5]B[4] B[3]B[2] B[1]B[0]

- Require 64 X 64 comparisons
b) A: 00 A[5]A[4] A[3]A[2] A[1]A[0]

 B: 10 B[5]B[4] B[3]B[2] B[1]B[0]
- Require 64 X 64 comparisons

c) A: 00 A[5]A[4] A[3]A[2] A[1]A[0]
 B: 11 B[5]B[4] B[3]B[2] B[1]B[0]

- Require 64 X 64 comparisons
 If MSD1 of A : 01

d) A: 01 A[5]A[4] A[3]A[2] A[1]A[0]

N.Saravanakumar et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 6 Dec 2013-Jan 2014 4585

 B: 00 B[5]B[4] B[3]B[2] B[1]B[0]
- Require 64 X 64 comparisons

e) A: 01 A[5]A[4] A[3]A[2] A[1]A[0]
 B: 10 B[5]B[4] B[3]B[2] B[1]B[0]

- Require 64 X 64 comparisons
f) A: 01 A[5]A[4] A[3]A[2] A[1]A[0]

 B: 11 B[5]B[4] B[3]B[2] B[1]B[0]
Require 64 X 64 comparisons

If MSD1 of A :10
g) A: 10 A[5]A[4] A[3]A[2] A[1]A[0]

 B: 00 B[5]B[4] B[3]B[2] B[1]B[0]
- Require 64 X 64 comparisons

h) A: 10 A[5]A[4] A[3]A[2] A[1]A[0]
 B: 01 B[5]B[4] B[3]B[2] B[1]B[0]

- Require 64 X 64 comparisons
i) A: 10 A[5]A[4] A[3]A[2] A[1]A[0]

 B: 11 B[5]B[4] B[3]B[2] B[1]B[0]
Require 64 X 64 comparisons

If MSD1 of A :11
j) A: 11 A[5]A[4] A[3]A[2] A[1]A[0]

 B: 00 B[5]B[4] B[3]B[2] B[1]B[0]
- Require 64 X 64 comparisons

k) A: 11 A[5]A[4] A[3]A[2] A[1]A[0]
 B: 01 B[5]B[4] B[3]B[2] B[1]B[0]

- Require 64 X 64 comparisons
l) A: 11 A[5]A[4] A[3]A[2] A[1]A[0]

 B: 10 B[5]B[4] B[3]B[2] B[1]B[0]
Require 64 X 64 comparisons

In total for d=2, d2 -1 comparisons are required within digit set. Thus we have 2d X (2d-1) X 2n-Id X 2n-Id = 4 X 3
X 26 X 26 comparisons in conventional comparator which is reduced to 4 X 3 = 12 comparisons.
Case ii: 8 bit input with 1st digit equal but 2nd digit unequal
If MSD1 of A : 00 and MSD1 of B : 00 / MSD1 of A :11 and MSD1 of B : 11 AND MSD2 of A:00

a) A: A[7]A[6] 00 A[3]A[2] A[1]A[0]
 B: B[7]B[6] 01 B[3]B[2] B[1]B[0]

- Require 16 X 16 comparisons
b) A: A[7]A[6] 00 A[3]A[2] A[1]A[0]

 B: B[7]B[6] 10 B[3]B[2] B[1]B[0]
- Require 16 X 16 comparisons

c) A: A[7]A[6] 00 A[3]A[2] A[1]A[0]
 B: B[7]B[6] 11 B[3]B[2] B[1]B[0]

- Require 16 X 16 comparisons
- In total 3 X 16 X 16 comparisons.

 Similarly
 If MSD1 of A : 00 and MSD1 of B : 00/ MSD1 of A :11 and MSD1 of B : 11ANDMSD2 of A:01

- Require 3 X 16 X 16 comparisons.
If MSD1 of A : 00 and MSD1 of B : 00/ MSD1 of A :11 and MSD1 of B : 11 AND MSD2 of A:10

- Require 3 X 16 X 16 comparisons
If MSD1 of A : 00 and MSD1 of B : 00 / MSD1 of A :11 and MSD1 of B : 11 AND MSD2 of A:11

N.Saravanakumar et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 6 Dec 2013-Jan 2014 4586

- Require 3 X 16 X 16 comparisons
Total comparisons = 4 X 3 X 24 X 24 which is reduced to 12 comparisons.

Thus it can be seen that in case of unequal inputs the number of comparisons reduces at the rate of 22id .

VI. EXPERIMENTAL EVALUATION
The proposed AEFBC based on radix-2 tree-based structure has been designed using VHDL code and

simulated using ALTERA QUARTUS II. Chuang et al. [12], Kim et al. [6] and Frustaci et al.[8] designs are
used for comparison. The power, delay and area estimates of the proposed AEFBC and designs used for
comparison for 16 bit input are shown in Table 1. It is seen that the AEFBC shows a delay reduction of 49.8%,
51.3% and 60.9% compared to Chuang et al. [12], Kim et al.[6] and Frustaci et al.[8] designs respectively. This
is due to the elimination of long carry chain of checking bits from MSB to LSB in the proposed comparator.
From the area estimates it can be seen that our comparator realizes the logic with fewer gate counts compared to
all other previous designs. This is due to tree based realization of the proposed comparator. From the power
dissipation estimates it can be seen that AEFBC exhibits minimum power dissipation compared to all other
designs used for comparison.

TABLE I
Power Delay and Area Estimates of Proposed AEFBC and Existing Designs

In addition, we have estimated the performance of our design for input operand: 4, 8 and shown in Table II. It

is seen that delay and power dissipation reduces significantly for higher bits. Also it is seen that in case of 8 bit
comparison, the power dissipation decreases with 2 bit grouping. This is due to, on an average the number of
checking is less with 2 bit grouping compared to 4 bit grouping

TABLE III
Power Delay and Area Estimates of AEFBC for n = 4, 8

In case of gate count comparison, it is seen that the total number of gates is less for 2 bit grouping compared

to 4 bit grouping. This is due to the increase in logic comparisons when the number of bits in grouping increase
which necessitates more logic elements. The simulation waveforms of the proposed AEFBC for inputs A = 0001
and B = 0100 is shown in Figure 2. The input is split into two groups and as the MSD of A: “00” is smaller than

Parameter

Proposed AEFBC

4 bit
8 (4 bit

grouping)
8 (2 bit

grouping)

Delay 7.272 10.381 8.913

Power 111.1 112.63 112.5

Area

AND 5 9 9

XOR 5 12 12

OR 6 5 6

NOT 6 12 8

Parameter
Proposed

work

Chuang

et al.

[12]

Kim

et al.[6]

Frustaci

et al.[8]

Delay (ns) 7.153 14.260 14.7 18.298

Power

(mw)
114.12 115.18 116.5 116.20

Area(in

gate count)
58 101 129 120

N.Saravanakumar et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 6 Dec 2013-Jan 2014 4587

MSD of B: “01”, Cout is set to “1” which implies BGR is “1”. The waveforms of 8 bit and 16 bit comparator are
shown in Figure 3 and Figure 4 respectively.

Fig.2. Simulation output of AEFBC for n = 4

Fig.3. Simulation output of AEFBC for n = 8

Fig. 4. Simulation output of AEFBC for n = 16

VII. IMPLEMENTATION OF PROPOSED COMPARATOR IN FACTORIAL CALCULATION
To verify the functionality of our proposed AEFBC, we have implemented it in Factorial calculator proposed

by Saha et al [13]. We use Chuang et al design [12] for comparison. Area, delay and power dissipation are the
parameters used for comparison. It is seen that the factorial calculator using our proposed comparator
demonstrate better performance with an area reduction of 62%, delay of 16.66 % and power reduction of 3.01%
compared to Chuang et al design implemented factorial calculator

VIII. CONCLUSION
ASIC implementation of a tree based binary comparator utilizing decision block and CLA technique is

proposed in this brief. The inputs are split into groups and checking for equality starts from XOR operation of
MSB group first. If MSB group is equal the checking proceeds to the next successive group towards LSB. On
the other hand if any group is not equal the group is processed by an encoder block to find the greatest of the
two using carry out signal of CLA addition. Experimental results demonstrate better performance of the
proposed binary comparator when compared to the state of the art designs in terms of power and area reductions.

N.Saravanakumar et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 6 Dec 2013-Jan 2014 4588

REFERENCES
[1] C.C. Wang, C.F. Wu, and K.C. Tsai, 1 GHz 64-bit high-speed comparator using ANT dynamic logic with two-phase clocking, IEEE

Proc.-Compute. Digit. Tech., Vol. 145, no. 6, pp. 433–436, 1998.
[2] C.H. Huang and J.S. Wang, High-performance and power-efficient CMOS comparators, IEEE J. Solid-State Circuits, Vol. 38, no. 2, pp.

254–262, 2003.
[3] J. E. Stine and M. J. Schulte, A combined two’s complement and floating-point comparator, Proc. Int. Symp. Circuits Syst., Vol. 1, pp.

89–92, 2005.
[4] H.M. Lam and C.Y. Tsui, High-performance single clock cycle CMOS comparator, Electron. Lett., Vol. 42, no. 2, pp. 75–77, 2006.
[5] H.M. Lam and C.Y. Tsui, A MUX-based high-performance “Single cycle CMOS comparator, IEEE Trans. Circuits Syst. II, Exp.

Briefs,vol. 54, no. 7, pp. 591–595, 2007.
[6] J.Y. Kim and H.J. Yoo, Bitwise competition logic for compact “Digital comparator, in Proc. IEEE Asian ASSCC, 2007, pp. 59–62
[7] S. Perri and P. Corsonello, Fast low-cost implementation of single-Clock cycle binary comparator, IEEE Trans. Circuits Syst. II, Exp.

Briefs, Vol. 55, no. 12, pp. 1239–1243, 2008
[8] F. Frustaci, S. Perri, M. Lanuzza, and P. Corsonello, A new low-Power high-speed single-clock-cycle binary comparator, Proc. IEEE

Int.Symp. Circuits Syst., pp. 317–320, 2010.
[9] Krishna Raj, Brijesh Kumar, Poornima Mittal, FPGA implementation and mask level CMOS layout design of redundant binary signed

digit comparator IJCSNS, Vol.9 no.9, 2009.
[10] Geetanjali Sharma, Uma Nirmal, Yogesh Misra Low power 8-bit magnitude comparator with small transistor count using hybrid

PTL/CMOS logic IJCEM, Vol. 12, 2011.
[11] Saleh Abdel-Hafeez, Scalable digital CMOS comparator using a parallel prefix tree, Proc. IEEE Int.Symp. Circuits Syst., pp.107-115,

2012.
[12] Pierce Chuang, David Li, and Manoj Sachdev, A low-power high-performance single-cycle tree based 64-bit binary comparator IEEE

Transactions On Circuits and Systems—II: Express Briefs, Vol.59, no. 2, 2012.
[13] P.Saha, A.Banerjee, A.Dandapat, P.Bhattacharyya ASIC design of a high speed low power circuit for factorial calculation using ancient

Vedic mathematics Microelectronics Journal , Vol 42. pp.1343–1352. 2001.

N.Saravanakumar et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 6 Dec 2013-Jan 2014 4589

	ASIC Implementation of Low Power AreaEfficient Folded Binary Comparator
	Abstract
	Keyword
	I. INTRODUCTION
	II. EXISTING TREE BASED BINARY COMPARATOR DESIGNS
	III. PROPOSED BINARY COMPARATOR
	IV. ILLUSTRATION OF THE PROPOSED METHOD
	V. MATHEMATICAL ANALYSIS OF SWITCHING IN THE PROPOSED BINARY COMPARATOR
	VI. EXPERIMENTAL EVALUATION
	VII. IMPLEMENTATION OF PROPOSED COMPARATOR IN FACTORIAL CALCULATION
	VIII. CONCLUSION
	REFERENCES

