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Abstract— This paper presents a design procedure for a Particle Swam Optimization (PSO) based PI 
and investigates the robustness of the PSO technique in the Quadruple Tank Process (QTP). From the 
open loop response, the transfer function is derived. Design of a Decentralized PI Control and tuning the 
PI parameters using Genetic Algorithm (GA) and PSO techniques are discussed. Performance index ISE 
is used for designing the controllers. The results show that PSO controller is robust for both servo and 
regulatory responses. 
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I. INTRODUCTION 

The multivariable zero dynamics of the system can be made both minimum phase and non-minimum phase 
by simply changing a valve. This makes the four tank system suitable for illustrating many concepts in linear 
and nonlinear multivariable control [1]. Designing multivariable decoupling and multiloop Proportional Integral 
(PI) / Proportional Integral Derivative (PID) controllers in a sequential manner were developed [2]. The method 
is based on a single-loop tuning technique developed for multivariable systems with unknown dynamics. 

   Tan et al [3] proposed PID tuning is based on loop shaping H∞ control. A method for auto-tuning fully cross-
coupled multivariable PID controllers from decentralized relay feedback is proposed [4]. It should be noted that 
modern control techniques might achieve better performance than the conventional PID controller. Zhuang and 
Atherton [5] designed a diagonal PID controller tuning using an integral performance optimization procedure 
for a Two Input Two Output (TITO) system. 

Genetic Algorithm (GA) has been demonstrated to be an appropriate tool for parameters optimization tasks 
and they have been used with good results. GA is a search technique used to find good solutions to optimization 
and search problems. They belong to a particular class of evolutionary algorithms that use techniques inspired 
by evolutionary biology such as inheritance, mutation, selection and crossover. A good solution is found by the 
GA providing a parametric fitness function to minimize [6]. 

Dimeo, and Lee [7] discussed the application of a genetic algorithm to control system design for a boiler-
turbine plant. The improved genetic algorithm for identifying multi-variables nonlinear boiler model of 300MW 
power unit is introduced [8]. In this algorithm, floating-point coding, rank - based selection, elitist reservation 
and grouping method are used, and the premature convergence is restrained, and the searching ability is 
improved. 

GAs and Neural Networks are adaptive optimization method based on biological principles [9]. These 
problems include optimizing the weighted connections in feed-forward neural networks using both binary and 
real-valued representations, and using a genetic algorithm to discover novel architectures in the form of 
connectivity patterns for neural networks that learn using error propagation. 

Application of the GA to an optimal control problem entails minimizing the Integral Squared Error (ISE) of 
the input and states [10]. Yuen [11] proposed by interacting with a dynamically constructed Binary Space 
Partitioning archive (BSP). The concept of BSP originates from the fields of computer graphics and 
computational geometry. The BSP archive is built up as a random tree for which its growth process reflects the 
evolution history of the GA, and is a quick method to query whether there is a revisit. 

Dongmei Zhang et al [12] proposed an improved genetic algorithm based on simplex crossover operator is 
used for the parameter optimization for support vector regression to make the crossover operation obtain the 
gradient, to make an adjustment through linear computing in the parameters, which are beyond the constraint 
scope after the reflection, expansion, and compression operation on the simplex operator, and to introduce the 
crossover validation strategy into the design of fitness function of genetic algorithm to improve the algorithm's 
generalization performance. 
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Design of frequency selective surface using Particle Swarm Optimization (PSO) technique is discussed [13] 
and [14]. The PSO algorithm is the population based optimization algorithm which can be used to solve the 
minimization problem [15].  Sadeghierad et al [16] presented the optimal design of high speed axial flux 
generator. The GA and PSO are used for optimizing the efficiency of machine.  

 

Bouzid Mhamdi et al [17] proposed the algorithm that integrates the main features of GA and PSO into the 
optimization process to solve the complicated scattering inverse problem. Particle swarm optimization technique 
has been used for tuning of neural networks utilized for carrying out both forward and reverse mappings of 
metal inert gas (MIG) welding process [18]. 

 

A.M. El-Zonkoly [19] proposed a multi-objective index-based approach for optimally determining the size and 
location of multi-Distributed Generation (multi-DG) units in distribution systems with different load models. It 
is shown that the load models can significantly affect the optimal location and sizing of DG resources in 
distribution systems. The proposed function also considers a wide range of technical issues such as active and 
reactive power losses of the system, the voltage profile, the line loading, and the Mega Volt Ampere (MVA) 
intake by the grid. An optimization technique based on particle swarm optimization (PSO) is introduced. 

 

The outline of the paper is as follows. A nonlinear model for the four tank system based on physical data is 
derived in section 2. Simple multi-loop PI control of the system using GA and PSO are discussed in section 3. 
The results and conclusions are presented in sections 4 and 5 respectively. 

II. PHYSICAL MODEL 

A schematic diagram of the process is shown in Figure. 1. The target is to control the level in the lower two 
tanks with two pumps. The process inputs are input voltages to the two pumps and the outputs are the level 
measurements.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 1. Schematic diagram of the four tank system 
 

The voltage applied to pump i is vi and the corresponding flow is kivi. The parameters γ1, γ2 ε (0,1) are 
determined from the position of the valves set prior to an experiment. The flow to Tank 1 is γ1k1v1 and the flow 
to Tank 4 is (1-γ1)k1v1 and the same applies to Tank 2 and Tank 3. The acceleration of gravity is denoted as g. 
The measured level signals are kch1 and kch2. 

Mass balances and Bernoulli’s law yield the following simple nonlinear equations [1] 

Pump 2 Pump 1 

Valve 1 Valve 2

 γ2
γ1 

v1
v2

 Tank 3 

 

  Tank 2
 h2

  Tank 
h1

 

 
 Tank 

Deepa Thangavelusamy et.al / International Journal of Engineering and Technology (IJET)

ISSN : 0975-4024 Vol 5 No 6 Dec 2013-Jan 2014 4661



                                           

31 1 1 12 2
11 311 1

2 2 4 2 22 2 22 4
2 2 2

1
223 3 2

3 2
3 3

1
1 14 4 2       144 4

kadh a

gh gh v
dt A A A

dh a a k
gh gh v

dt A A A

kdh a
gh v

dt A A

kdh a

gh v
dt A A

γ

= − + +

γ
=− + +

 
 −γ
 
 =− +

 −γ 
 = − +

                

(1) 

where 
Ai : Cross-section of Tank i  
ai : Cross-section of the outlet hole i 
hi : Water level i 
 
The linearized state-space equation is given by 
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The corresponding transfer function matrix is 
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where c1=T1k1kc/A1 and c2=T2k2kc/A2. 

Figure.2 shows the experimental setup of the Quadruple Tank Process (QTP) consisting of four 
interconnected tanks with common water source. This setup is interfaced with a window - based PC via 
interfacing modules and USB ports. This setup consists of a water supply tank with two positive displacement 
pumps for water circulation, two pneumatic control valves, four transparent process tanks fitted with level 
transmitters and rotameters (0-440 lph). Process signals from the level transmitters are interfaced with the PC 
and it sends outputs to the individual control valves through interfacing units using LabVIEW software. Tanks 1 
and 2 are mounted below the other two tanks 3 and 4 for receiving water flow by gravity. Each tank outlet 
opening is fitted with a valve. Both pumps 1 and 2 takes water by suction from the reservoir. Flow from the 
pumps is split to top and bottom tanks by manually adjusting the valves. Ratio of flow split between the top and 
bottom tanks, substantially alters the dynamics of the system. Pump 1 discharges water to tank 1 and tank 4 
simultaneously and the flows are indicated by rotameters 1 and 4. Similarly, pump 2 discharges water to tank 2 
and tank 3 and the flows are indicated by rotameters 2 and 3. Tanks 1 and 2 also receive water by gravity flow 
from tank 4 and tank 3, respectively. 
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Figure. 2. Experimental setup of the four tank system 
 

The parameters of QTP are given in Table 1.    
TABLE 1 

PROCESS PARAMETER VALUES OF Fig.1 
 

i Ai(cm2) ai(cm2) hi
0 (cm) 

1 176.71 2.01 6.34 
2 176.71 2.01 8.31 
3 176.71 2.01 3.06 
4 176.71 2.01 4.16 

 
The time constants are T1=42.48 sec, T2=55.64 sec, T3=39.86 sec and T4=55.68 sec. 
The transfer function matrix is given in (5) 

( )( )

( )( )

0.3811 0.2334
42.48S+1 42.48S+1 39.86S+1

G(s)=
0.1998 0.3934

55.68S+1 55.64S+1 55.68S+1

 
 
 
 
 
  

       
(5)

 

 
Relative Gain Array (RGA) 
 
The RGA was introduced by Ed Bristol as a measure of interaction in multivariable control systems [16]. The 
RGA Λ is defined as  

( ) ( )T
G 0 G 0

−
Λ = ×          (6) 

where ×  denotes the element by element matrix multiplication and –T inverse transpose. 
Properties of RGA: 

1. Sum of rows and columns property of the RGA 
Each row of the RGA sums to 1.0 and each column of the RGA sums to 1.0. 
 

(ie) λ11+λ12=1  λ11+λ21=1 
       λ12+λ22=1  λ21+λ22=1 
 

2. Use of RGA to determine variable pairing. 
It is desirable to pair output i and input j such that λij is as close to 1 as possible. 

The RGA depends only on the valve settings and not on other physical parameters. 

RGA 
1.4515 -0.4515

Λ=
-0.4515 1.4515

 
 
      

From RGA h1 is paired with u1 and h2 is paired with u2
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III. DECENTRALIZED PI CONTROL 
   The decentralized controller structure is shown in Figure.3 and the decentralized control law [4] 
u=diag{C1,C2}(r-y) . 

The QTP is considered as minimum phase process (the process does not have RHP zeros or time delays).  
PI controllers have the form [20] 

1
C (s) = K 1+ ,    l = 1, 2   l l T sil

 
 
 
 

         
(7) 

So the direct synthesis controller for a first order process gives 

0.5

Til
Kl K TP c

T T   c il

=

=
           (8) 

 
 
 
 
 
 
 
 
 
 
 
 

Figure.3 Decentralized control structure with two PI controllers 

3.1 Genetic Algorithm 

The most popular technique in evolutionary computation research has been the genetic algorithm [7]. An 
initial population of step response data is created. The fitness is evaluated through some appropriate measure. 
The algorithm is driven towards maximizing this fitness measure. For example, in a function maximization 
problem the fitness measure might be the function evaluation itself. Application of the GA to an optimal control 
problem entails minimizing the ISE of the input and states. After the fitness of the entire population has been 
determined, it must be determined whether or not the termination criterion has been satisfied. This criterion can 
be any number of things. One possibility is to stop the algorithm at some finite number of generations and 
designate the result as the best fit from the population. Another possibility is to test if the average fitness of the 
population exceeds some fraction of the best fit in the population. If the criterion is not satisfied then continue 
with the three genetic operators. Next, the three genetic operations of reproduction, crossover, and mutation are 
invoked. Fitness-proportionate reproduction is effected thought the simulated spin of a weighted roulette wheel. 

The roulette wheel is biased with the fitness of each of the solution candidates. The wheel is spinned N times 
where N is the number of strings in the population. This operation yields a new population of strings that reflect 
the fitness of the previous generation's fit candidates. The next operation, crossover, is performed on two strings 
at a time that are selected from the population at random. Crossover involves choosing a random position in the 
two strings and swapping the bits that occur after this position. In one generation the crossover operation is 
performed on a specified percentage of the population. This proportion of the population is specified at the 
initialization stage of the algorithm. The final genetic operator in the algorithm is mutation. Mutation is 
performed sparingly, typically every 100- 1000 bit transfers from crossover, and it involves selecting a string at 
random as well as a bit position at random and changing it from a 1 to a 0 or vice-versa. After mutation, the new 
generation is complete and the procedure begins again with fitness evaluation of the population. 

In a control system design using the GA the parameters that are represented as binary strings are the relevant 
control parameters. In the design of the PI control system, the parameters are the two proportional, integral 
controller illustrated in Figure 3. 

The GA based PI parameters are tuned using MATLAB software and these values are applied to 
experimental set up of four tank process. The objective function (F) considered is based on the error criterion (9). 
The controller performance is evaluated in terms of ISE given by, 
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The following GA parameters are selected for the training cycle 
Population Size  :  10 
Selection  :   Roulette Wheel 
Cross Over Rate   :  0.8 
Mutation Rate  :   0.01 
Generations  :  100 
Population Type  :  Double  
3.2 Particle Swarm Optimization 

PSO is a robust stochastic optimization technique based on the movement and intelligence of swarms. PSO 
applies the concept of social interaction to problem solving. It was developed in 1995 by James Kennedy and 
Russell Eberhart. It uses a number of agents that constitute a swarm, moving around in the search space, looking 
for the best solution. Each particle is treated as a point in an N-dimensional space which adjusts its “flying” 
according to its own flying experience as well as the flying experience of other particles. Each particle keeps 
track of its coordinates, in the solution space, which are associated with the best solution that has achieved so far 
by that particle. This value is called personal best, pbest. Another best value that is tracked by the PSO is the 
best value obtained so far by any particle in the neighbourhood of that particle. This value is called gbest. The 
basic concept of PSO lies in accelerating each particle toward its pbest and the gbest locations, with a random 
weighted acceleration at each time step as shown in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 4. Graphical representation of the mechanism of velocity update.
 where 

Sk  : current searching point. 
Sk+1  : modified searching point.                                                                         
 Vk  : current velocity. 
Vk+1  : modified velocity.                                                                                       
Vpbest   : velocity based on pbest. 
Vgbest   : velocity based on gbest. 
 
Each particle tries to modify its position using various informations, such as current positions, current 

velocities, the distance between the current position and pbest, and the distance between the current position and 
the gbest.  
The modification of the particle’s position can be mathematically modeled according to the following 

equation: ( ) ( ) ( ) ( )V 1 wV c rand1   pbest s   c rand2   gbest sik ik 1 2i ik ik+ = + … × − + … × −     (10)  
where,  

Vik     : velocity of agent i at iteration k,                                                                     
w      :weighting function,                                                                                                                                                   

 cj       : weighting factor,                                                                                                                        
 rand   : uniformly distributed random number  between 0 and 1,                                                                             

sik       : current position of agent i at iteration k,                                                                                                   
 pbesti   : pbest of agent i,                                                                                                                           
 gbest   : gbest of the group. 
The following weighting function is usually utilized in the equation (10) 

Pn
g(l) 

xn
i(l) 

xn
i(l+1) 

Pn
i,L(l) 

vn
i(l) Current motion 

Individual Correction 

Social Correction 
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( )w  w w w   iter / N   Max Max Min
 = − − ×           (11) 

where   wMax  :initial weight, 
             wMin   :final weight, 
    N       :maximum iteration number, 
            iter    :current iteration number.  

The new position is then determined by the sum of the previous position and the velocity 

s 1  s  V 1 ik ik ik+ = + +          (12) 
The flow chart of a general PSO algorithm [21] is developed. The optimal values of the conventional PI 

controller parameters Kp and Ki are found using PSO. Certain parameters of PSO need to be defined. The 
objective function (F) considered, is based on the error criterion (12). The controller performance is evaluated in 
terms of Integral Square Error (ISE) given in equation (9). 

The PSO algorithm will compare the objective function evaluated at the new positions with the error criterion 
set by the user as illustrated in Figure.5. If the criterion is not satisfied, the random number generations will 
insure that different numerical values will be tried in the next update and the process can go on until the 
termination of the evaluation of the algorithm. 
 
 
 
 
 
 

 
 
 
 
 

Figure. 5. Flow chart for the PSO algorithm 
 
The following PSO parameters are selected for the training cycle for the QTP 
Size of the swarm "no of birds"    n = 50;   
Maximum number of "birds steps"           = 100;    
PSO parameter C1                 c1 = 0.4; 
PSO parameter C2                c2 = 0.4;          
PSO momentum or inertia                   w =0.9;    

 
These PI parameter values are applied for four tank system of the laboratory set up. The controller parameter 

values are tabulated in Table 2 for Decentralized, GA and PSO based PI.  Figure 6 and 7 shows that the 
variation of the fitness function with number of generations using GA and PSO based PI.   

 
   TABLE 2 

CONTROLLER PARAMETERS 
 

Type of 
Controller 

Controller parameters 
K1 K2 Ki1 Ki2 

Decentralized PI 5.248 
 

5.084 0.1235 0.0913 

GA based PI 21.69 19.21 0. 52 0.35 

PSO based PI 9.73 24.03 0.14 0.2 

Initialize population 

Get global and 
local best

PSO algorithm (calculate
next population) 

Satisfy criteria 

End

Yes
No
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Figure. 6. Iteration Graph for GA 
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Figure. 7. Iteration Graph for PSO 

IV. RESULTS AND DISCUSSION 
Experimental results are carried out to evaluate the proposed control method by utilizing the LabVIEW 

software. The performance of the different control strategies are compared based on the ISE and the Integral 
Absolute Error (IAE) for the two controlled outputs h1 and h2. The design of the disturbance is also satisfactory 
for characterizing the performance of the three different control strategies. 
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Figure 8. Experimental results for Closed Loop response of level h1 
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Figure 9. Experimental results for Closed Loop response level h2 
 

Figure 8 and 9 shows the experimental results of the closed loop response of water level h1 and h2 for 
decentralized PI, tuning PI parameters using GA and PSO. The ISE and IAE values of PSO tuned PI is less for 
both water levels h1 and h2 when compared to decentralized PI and GA based PI and shown in Table 3. 

In order to test the performance of the proposed design procedure of PSO controller, simulation was carried 
out for the servo and regulatory operations. The set point tracking responses of the water level of h1 and h2 for 
the above controllers are given in Figure 10 and 11. At 1200th sec the set point is changed from 10cm to 12cm 
and at 2400th sec the set point is decreased from 12cm to 10cm. After that the set point is increased to 16cm at 
3600th sec, and the response is plotted. 

 
TABLE 3 

PERFORMANCE COMPARISION OF VARIOUS CONTROLLERS  
(TANK 1 AND TANK 2) 

 
Type of 

Controller 
Level Output of 

Tank1 (h1) 
Level Output of 

Tank2 (h2) 
ISE IAE ISE IAE 

Decentralized 
PI 

23.06 
 

4.45 
 

17.34 3.33 

GA based PI 16.58 
 

3.40 12.7 
 

3 
 

PSO based PI 14.92 
 

3.32 11.6 
 

2.6 
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Figure 10. Experimental results for Set point tracking for the Responses of the water level (h1) 
 
The performance comparison of the set point tracking of the controllers for level h1 and h2 are given in Table 

4 and 5 respectively. 
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TABLE 4 
PERFORMANCE COMPARISION OF SETPOINT CHANGES (TANK 1) 
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Figure 11. Experimental results for Set point tracking for the Responses of the water level (h2) 

 
TABLE 5 

PERFORMANCE COMPARISION OF SETPOINT CHANGES (TANK 2) 
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Figure 12. Experimental results for Regulatory response of water level h1     

Various set points Type of Controllers 
Decentralized PI GA based PI PSO based PI 

Set point  (10 cm) ISE 25.5 18.1 16.5 
IAE 4.58 3.64 3.5 

Set point  (12 cm) ISE 0.45 0.39 0.3 
IAE 0.73 0.72 0.59 

Set point  (10 cm) ISE 0.23 0.29 0.2 
IAE 0.48 0.46 0.42 

Set point  (16 cm) ISE 1.16 1.04 0.96 
IAE 0.82 0.52 0.48 

Various set points Type of Controllers 
Decentralized PI GA based PI PSO based PI 

Set point (10 cm) ISE 25.5 13.9 12.6 
IAE 4.56 3.33 2.84 

Set point  (12 cm) ISE 0.45 0.32 0.27 
IAE 0.73 0.61 0.56 

Set point  (10 cm) ISE 0.23 0.23 0.19 
IAE 0.42 0.37 0.4 

Set point  (16 cm) ISE 1.38 1.04 0.98 
IAE 0.55 0.52 0.4 
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Figure 13. Experimental results for Regulatory response of water level h2 
 
Figure 12 and 13 are the regulatory responses of water level h1 and h2. Initially the level of tank 1 and tank 2 

are maintained at steady state of 10cm. A sudden external disturbance (1000ml of water) is appended in tank 1 
and tank 2 at 1200 sec. From the above response PSO responses settles quickly.  

ISE and IAE values of regulatory response for all the controllers of both the levels are tabulated in Table 6. 
The system response of the level h1 and h2 (Fig. 10- 13) show both servo and regulatory operations. 

 
TABLE 6 

PERFORMANCE COMPARISION OF REGULATORY RESPONSE 
 

Type of Controllers Regulatory Response 
(h1) 

Regulatory Response 
(h2) 

ISE IAE ISE IAE 

Decentralized PI 11.46 3.02 11.81 3.29 

GA based PI 11.34 2.87 11.18 2.56 

PSO based PI 11.22 2.84 8.9 2.77 

V. CONCLUSION 
The performance/robustness comparison among the decentralized, GA and PSO controllers are designed to 

control the liquid level of the laboratory QTP. The PSO responses are compared with decentralized PI and GA 
responses. From these responses it is observed that the ISE and IAE values are low with PSO controller than 
with decentralized PI and GA controller. The results show that PSO controller performance is better and is 
robust for both servo and regulatory responses. The design of PSO controller is tested for an operating condition 
and the servo and regulatory responses are proved and established.The heading of the Acknowledgment section 
and the References section must not be numbered. 
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