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Abstract: Many researchers showed their interest in solving the two challenge problems posed on
academic community on controlling the gasifier by ALSTOM. Earlier part of the researchers tried
advanced controller methods using the higher order state space model provided by ALSTOM. But, the
inability to meet some constraints during integrated model and controller simulation, the authors have
desired lower order MIMO transfer function models for the gasifier. Accordingly three lower order
model representations for original higher order gasifier came to surface. However lower order model
derived based on balanced realisation using Hankel singularity values method has only been successful in
controlling gasifier for different types of disturbances and simultaneously meeting the input/output
constraints. In this paper the authors investigate why all lower order model representation could not
become successful sans balanced realisation method.

Key words: ALSTOM gasifier, lower order modelling and simulation, balanced realisation using Hankel
singularity values, auxiliary method, algebraic method.

l. INTRODUCTION

ALSTOM Gasifier is a complicated non linear process. Air, coal and steam are mixed to produce
environmentally clean gas called syngas [1]. The outputs are pressure, temperature and calorific value of the
syngas [2]. Two challenge problems have been posed by Alstom so as to provide a control philosophy which
will ensure required gasifier performance requirements during disturbances emanating from load side as well as
variationsin calorific value of the coal from input side. Towards this, broadly three approaches have been found
in the literature to evaluate the gasifier performance :

e Consider the higher order state space model as given by Alstom and try to tune the base line
PI control algorithm. [7,8,9-22]

e Consider the higher order state space model as given by Alstom but try modern control
algorithms such as model predictive control[3,21], H control [4], Sequential loop closing
approach[6] and state estimation approach[5] , multi variable proportional integral plus
control[11], partially decentralised control[23], self-adaptive differential evolution
algorithm[ 18], active disturbance rejection control[24] , Non dominated sorting genetic
algorithm 11[15], Multi objective genetic algorithm[16] etc. for performance evaluation.

e Reduce the higher order state space model given by Alstom into low order transfer function
models and try to tune the Pl control agorithm[26-31]

In this paper, the authors investigate the accuracy and suitability of low order models derived by three distinct
methods viz. balanced realisation using Hankel singularity values, auxiliary method and algebraic method.

. PROBLEM STATEMENT:

Alstom gasifier system is having Air, coal, steam, lime stone and char asinputs and calorific value, pressure and
temperature of syngas and bed mass as output variables. This congtitutes a 5x4 MIMO system. Lime stone is
added to coal in proportion to 1:10 and char is extracted out periodically. Bed mass represents the height of
accumulated ash in the gasifier and it is removed periodicaly. Accordingly, the inputs and outputs of gasifier is
schematically shown in Figure-1..
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Figl: Schematic diagram of gasifier with inputs and outputs

The ALSTOM gasifier is modelled to operate in three linear models representing three operating conditions at 0O,
50 and 100% load respectively. The gasifier transfer characteristics model given by Alstom is as follows:

yi(s) G1(s) G12(s) G13(s) ul(s)
y2(s) |[= | G2Ls) G22(s) G23(s) u2(s)
y3(s) G3L(s) G32(s) G33(s) u3(s)

Where the denominator of G;jis of 18" order and the numerator is of either 16" or 15" order. It is desirable to
reduce higher order transfer functionsto lower order transfer functions.
[l. REDUCED ORDER MODELLING TECHNIQUES

Working with simpler models result in faster and more reliable computations than higher-order
models. Simpler models are also easier to understand and manipulate. Lower order models
which are preserving the original higher order model characteristics are desirable for the study
of control and optimisation purposes[50]. Many authors [26-39] underwent lower order
modelling for different non linear and linear systems. The following three model reduction
techniques are quite common [41,40].

e Balanced realisation using hankel singularity values

e Algebraic method
e Auxiliary method
A. Balanced Realisation using Hankel singular values

Consider the state-space representation of alinear time-invariant (LTI) system:

X = Ax+Bu
Y=Cx

nxn nxp pPXn pxd nxi
wheeAe p ,BeR 'CeR andue R 'X€ R representsthe state vector of the system. Here

n denotes the order of the system and p represents the size of input vector [44].
The god isto get the lower system given by

Xr:Ar Xr + br ur
Yr:Cr Xr
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kock kxp pxk pxt o . .
wheeAe g ,Be R 'Ce R andue R 'X€ R .ristheorder of the reduced system which will
be much smaller than that of the original system. The balanced truncation techniques uses order reduction by

providing an L error bound between the original and reduced systems. Two grammians PL and Q,  @e
needed which are obtained by solving Lur’ e equations. PL is called controllability grammian which is the

measure of how the states and outputs are coupled with each other. Q. is called the observability grammian

which measures how the states and the outputs are coupled to each other. It is proved that transformation matrix
T maps the given system to balanced realization such that controllability and observahility of new system ( A

B, C, ) are equal and diagonal.

Py = Q,, =2 =diag(¢L £2, ... én,)>0 where (&1, £2, ... dnare called Hankel singular values

2. isportioned in to two sub matrixes
X1 0
z{o 22}

(n—k)x(n-k)
R

kxk
Where Y1 € R and > 2 € and new matrix is

=T 1=
AT A A21 A2

Bl
Br=TB= ,

Cr= CT-1= [c1 c2]

b

HereL oo error is bounded by

[H() - Hr(9) o <=2 5" ,q € i

Consider the higher order system transfer characteristics G11 of ALSTOM gasifier corresponding to 50% load

—1.208e + 004517 — 5.25e + 005516 —9.387e + 005515 —5.3%e + 006514 - 1.286e005313 - l.599e004s:|'2 - 105551:L - 41.O4s10

- 0.899489 - 0.010338 - 5.318e - 00537 - 9.892e - 0886 - 6.591e - 1135 —-1.281e - 01484 + 3.326e — 01833 +1.513e - 02132

+ 9.6477e — 026s — 9.721e — 030
Gli= 15 7

s +4387s + 81.23s16 + 49.97s15 + 13.44514 + 1.926313 + 0.1621s12 + 0.008369311 + 2.955e — OlOslo + 5.096e — 007s9

+ 5.472e — 00858 + 2.955e — 01037 7.18e - 01336 + 8.62e — 01655 + 5.74e — 01954 + 2.227e — 02253 + 4.996e — 02632

+ 5.998e — 30s + 2.971e — 34

Balanced realisation can be implemented using MATLAB command RSY S = BALRED(SY S,ORDERS). Here
ORDERS indicates the order of the system. The reduced order transfer function is given by,

-1.83% + 00552 + 56.37s - 0.002357

g(S) = 2
s~ + 0.0005765s + 7.203e - 08

B. Auxiliary method
Consider an n™ linear time invariant continuous higher order system represented by its transfer function as [43]:
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n-1
NG 2
G9=——="F—
D(S) Z a
i=0 is

— A‘l—lsn_l + %_an_z Foeeen + A232 + A_'I.S+ AU

aps” + an_lsn_1 F e F a252 +aS+ag

The second order transfer functions are given by

As+A
a(s) =% ............ @
azs +a13+a0

Consider the transfer function characteristics G11 in equation (1). Here Ay=9.647e-26; A=  -9.721e-30;
2=4.996e-26; 8,=5.998e-30; 8,=2.971e-34

9.647e — 26s-9.721e- 30

g(s) = 2
4.996e - 26s” + 5.998e - 30s + 2.971e- 34
The steady state gain is given by
-9.721e - 030
—— =-3.27196e-04
2971e-34
-1.208e + 04
Transient gainisgivenby ——— =-1.208e+04
1

Objective isto maintain the steady state and approximating the transient gain.
The above equation can be represented as

-1.208e + 04s + B1
1.443¢ - 30s°+B2s+ B3
Divide B1,B2, and B3 by s* term. Now the second order transfer function becomes,
-1.208e + 04s+1.3457e- 04

s24+1.2005e - 045 + 0.59467¢ - 08

90 =

G(s) =

C. Algebraic Method:
The higher order transfer function is equated with the lower order model [42]:

an_lsn_l + an_zsn_2 F oo, tag Azs2 +As+ Ay
bps +b,_4S T+ +by 8232 + Bys+ BA,

On cross multiplying, the equation becomes

n-1 n-2 2 m m-1 2
(an_ls +ap,_oS + + ao)(st +Bys+ BO) =(bps  + bn_ls + + bo)(Azs +As+ AO)

The ALSTOM transfer function for G4, at 0% load

6 5 3 2 0 9

—1.683e004s" — 955800055 — 1.94100651° — 1.26006s"* — 2.157€0055- — 1677004512 — 651551 —13.25'0 — 0.1337s

—~0.0005759s° — 7.937e - 0075’ — 2.703¢ - 010s° + 5.053e - 155° + 2.019e - 0175” + 4.468 — 0225° + 4.132¢ — 02552 + 1.537¢ — 0295+ 1.2e — 034

+57.2351 118450 + 76.4151° 1 15.726M + 1480513 1 00748151 + 0.0021265M + 3.447¢ - 005510 + 3.039¢ - 0075 + 1.287¢ - 009 + 2.218¢ - 0125"

1.62e— 0155 + 6.231e - 019s° + 1.392e — 02257 + 1.858e — 026 + 1.443e — 03052 + 9.635¢ — 040

Gll=

S18
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The & can be obtained by the formula

_ Sumof poles+ Sum of zeros

ag =
No of poles+ No of zeros
Bm-1 L 2n-2
bm a
_ n-1
ag =

mxn

_ 57.23/1% ((-9.55€ + 05)/(-1.683e + 004 ))
18+17

8 = 10.5403, 242.4178, -9.0014, -207.0325

Taking appropriate value of &  equating the powers of s,
and solving the equation the unknown values of B0,B1,B2,A1,A2 can be obtained. Thus,

- 2.966146e + 10s + 114.021444

g(s) =
1762415.861223s2 - 382735.79834s + 0.000915

V. SIMULATION RESULTS

In order to evaluate the reduced order transfer function models obtained through different methods, the unit
impulse response of ALSTOM model has been taken as reference response and the responses obtained through
different methods are compared and some results are shown in figure 2 to 4

Impulse Response

3000r T T T = T : !
—— ALSTOM
Algebraic
2000 Balanced realisation ||
Auxiliary
1000 =
Q
=
=
= o =1
j= 3
el
<C
-1000 |- ]
-2000 |- ]
-3000-L ' L ' = ' ' ' y
0 2 4 6 8 10 12 14
Time (seconds) X 1(]5

Fig 2: variation of pressure with coal flow rate
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Fig 3: variation of pressure with air flow rate

Impulse Response
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u
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Fig 4: variation of temperature with steam flow rate
Note: the response of ALSTOM model G(t) and response obtained through balanced redlisation method g(t) are
closely mapped.
The errors on the basis of IAE (Integral Absolute Error) ISE (Integral Squared Error) are computed for each

transfer function block obtained by balanced realisation using Hankel approximation method ,auxiliary method
and algebraic method over a period of time (little above the rise time) are shown in Table 1 for al the loads.

Lol ) S

x 10

Table 4: Integral absolute and integral square error criterion for 0% load

Transfer No-load 50% load 100% load
function Balanced | Auxilia | Algebraic | Balanced | Auxilia | Algebraic | Balanced | Auxiliar | Algebraic
characteristics | Realisatio | ry method Realisatio | ry method Realisatio | y method | method
n method method n method n
method method

Gl1 1.63 3.51 4.42 0.0796 0.828 11 2.21 74 9.16
G12 1.14 4.41 8.77 0.783 0.923 6.79 1.03 7.23 7.65
G13 1.01 2.21 3.29 0.0341 0.781 1.01 14 181 1.8
G21 0.628 1.18 3.97 0.223 0.922 2.62 0.754 0.711 1.32
G22 3.6 3.7 3.16 0.0578 0.711 1.65 0.662 0.54 2.52
G23 0.06 0.72 3.29 0.905 1.24 1.58 2.95 4,95 6.48
G31 2.0172 3.57 8.62 2.63 7.2 8.6 0.075 1.175 2.15
G32 0.353 0.372 0.397 0.771 1.64 1.58 0.233 1.233 1.9
G33 0.03489 0.789 7.689 2.74 2.94 5.91 1.84 1.72 1.659
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V. PERFORMANCE TESTS AND DISCUSSION:

Table 1 shows that balanced realisation method is superior to other methods.

Also in order to approximate the higher order transfer functions, with the second order transfer functions, the
following time domain parameters are vital.

Risetime

Settling time
Peak response
Steady state value

The transient response characteristics results between ALSTOM gasifier and the balanced realisation method
are given in table 2 for no-load condition. Similar tabular column can be obtained for 50% and 100% load . It is
found that balanced realisation method retains all the important transient time characteristics of the original
system and approximates its response as closely as possible for the same type of inputs.

Impulse Response
-

350% ) ) ) = ) ) ) i
300 — ALSTOM model | ------- -
Balanced realisation
280 [R----- - e =
200 ________________________________________________________________________________________________________________
= 4508 X S— AN SR S S
a : : : : : : : :
100 f------ JJ ______________________________________
50 ooy R et M A T et e T e
e steady state yalue, _
O e N T L L s L L L e L g e e
i
-50E - L0l i i n
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Time (seconds)
Figure 5: transfer function characteristics with time domain parameters
Table 2: Time domain parameter response for 0% load
Peak responsetime Settling time Steady state value Risetime
Transfer
functions | Higher Balanced Higher Balanced | Higher Balanced Higher Balanced
Order realisation Order realisation | Order realisation Order realisation
G11 -4.99E+05 -4.38E+05 8.45E+04 2.78E+03 | 1.25E+05 1.24E+05 736 9.23E+04
G12 -1.29E+06 -1.30E+06 1.04E+05 1.07E+05 | -3.74E+05 -3.74E+05 7.73E+02 | 1.70E+03
G 13 9.08E+05 9.08E+05 3.36E+04 2.76E+04 | -3.42E+05 -3.42E+05 211E+04 | 1.12E+04
G21 4.22E+03 4.25E+03 1.04E+05 1.06E+05 | 1.48E+03 1.48E+03 947 940
G22 -2.73E+03 -2.76E+03 1.04E+05 1.07E+05 | -4.66E+02 -4.66E+02 4.10E+02 | 1.53E+03
G23 7.63E+03 6.90E+03 2.88E+04 2.81E+04 | 3.93E+03 3.93E+03 5.22E+00 | 1.12E+04
G31 88.3 87.8 8.43E+04 9.52E+04 | 60.4 60.4 2.36E+03 | 2.56E+03
G 32 -170 -171 1.04E+05 1.07E+05 | -79.7 -79.7 1.46E+03 | 1.46E+03
G 33 -120 -120 3.34E+04 2.85E+04 | -120 -120 1.04E+04 | 1.13E+04
Gdil 4.74E+03 -2.31E-01 8.23E+04 1.01E+05 | -0.072 -0.072 2.18E+02 | 5.18E+04
Gd2 0.986 0.986 5.53 9.79e+04 0.986 0.986 451 5.27e+04
Gd3 -2.68E+03 -2.20E-05 8.26E+04 1.01E+05 | -6.35E-06 -6.35E-06 190 5.19E+04
ISSN : 0975-4024 Vol 5No 6 Dec 2013-Jan 2014 4810
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V1. CONCLUSION:

Most of the lower order model techniques stem from the idea of matching the steady state gain or transient gain
or both. It is more important that the time domain parameters also to be satisfied. The simulation and tabulation
results show that only balanced realisation method has lesser IAE error and give better approximation to the
higher order models. This is due to the fact that balanced realisation method not only satisfies steady state gain
but also transient characteristics such as peak response time, rise time and settling time. It is believed that the
models derived by balanced realisation method given in annexure 1 will become basis for further research on
Gasifier control. The authors have investigated with these lower order models and obtained very good results for
the two challenge problem posed on gasifier control and the results will be published separately. These lower
order models may also be used by researchers with different control agorithm to see the performance of the
gasifier
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Transfer function characteristics using balanced realisation method
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