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Abstract: An analysis is performed to study the influence of temperature-dependent viscosity and 
thermal conductivity on the unsteady laminar free convection flow over a semi infinite vertical plate by 
taking into account the Dufour and Soret numbers. Both viscosity and thermal conductivity are variables 
and considered only a function of temperature. It is assumed that the viscosity of the fluid is an 
exponential function and thermal conductivity is a linear function of the temperature. The non-linear 
coupled dimensionless equations governing the boundary layer flow, heat and mass transfer are solved by 
using implicit finite-difference method of Crank-Nicolson type. An analysis of the effects of different 
parameters on dimensionless velocity, temperature and concentration profiles, as well as the local and 
average skin-friction and the rates of heat and mass transfer, is shown graphically. 
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I. INTRODUCTION 

The phenomenon of free convection by the simultaneous action of buoyancy forces from thermal and mass 
diffusion has many industrial applications such as in cooling a nuclear reactor, geothermal systems, 
oceanography and granular insulation, chemical, drying processes and solidification of binary alloy etc. A 
number of investigations have already been carried out with combined heat and mass transfer under the 
assumption of different physical situations. When heat and mass transfer occur simultaneously between the 
fluxes, the driving potentials are of more intricate nature. An energy flux can be generated not only by 
temperature gradients but by composition gradients. The energy flux caused by a composition is called Dufour 
or diffusion-thermo effect. Temperature gradients can also create mass fluxes, and this is the Soret or thermal-
diffusion effect. Both effects have been extensively studied in gases and the Soret effect has been studied both 
theoretically and experimentally in liquids. Sparrow et al. [1] studied experimentally the effect of diffusion 
thermo on the heat transfer, mass transfer, and flow in a boundary layer into which various foreign gases are 
injected. 

Generally, the thermal-diffusion and the diffusion thermo effects are of a smaller-order magnitude than the 
effects prescribed by Fourier’s or Fick’s laws and are often neglected in heat and mass transfer processes. Mass 
transfer is one of the most commonly encountered phenomena in chemical industries as well as in physical and 
biological sciences. When mass transfer takes place in a fluid at rest, the mass is transferred purely by molecular 
diffusion resulting from concentration gradients. For low concentrations of the mass in the fluid and low mass 
transfer rates, the convective heat and mass transfer process are similar in nature. Gnaneswara Reddy and 
Bhaskar Reddy [2] analyzed a steady two-dimensional MHD free convection flow viscous dissipating fluid past 
a semi-infinite moving vertical plate in a porous medium with Soret and Dufour effects using Runge-Kutta 
fourth order with shooting method, the velocity decreases with an increase in the magnetic parameter. Alam et al. 
[3] have analyzed numerically the Dufour and Soret effects on combined free-forced convection and mass 
transfer flow past a semi-infinite vertical plate, under the influence of a transversely applied magnetic field. The 
thermal diffusion and the diffusion-thermo effects on a steady laminar boundary layer flow over a vertical flat 
plate with temperature dependent viscosity, was studied by  Kafoussias and Williams [4]. Many researchers, 
Postelnicu [5], Alam et al. [6] and Hayat et al. [7] have considered the Dufour and Soret effects on natural 
convection heat and mass transfer over a vertical surface in a porous medium extensively. Srinivasacharya and 
Ram [8] presented the Soret and Dufour Effects on mixed convection heat and mass transfer in a micropolar 
fluid using the Keller-box method. These problems are solved without the parameters of variable viscosity and 
thermal conductivity using different methods but not implicit finite-difference method of Crank-Nicolson type. 

The term viscosity is essential in the field of fluid flow. However, the variation of viscosity with 
temperature is an interesting macroscopical physical phenomenon in fluid mechanics. It is necessary to consider 
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the variation of viscosity in the fluid flow problems to accurately predict the flow behaviour. Kafoussias and 
Williams [9] presented the effect of temperature dependent viscosity on free-forced convective laminar 
boundary layer flow past a vertical isothermal flat plate. Hady et al. [10] studied mixed convection boundary 
layer flow on a continuous flat plate with variable viscosity. Eldahab and Salem [11] investigated the radiation 
effect in the presence of a uniform transverse magnetic field on steady free convection flow with variable 
viscosity is investigated. The fluid viscosity is assumed to vary as the reciprocal of a linear function of 
temperature and the governing equations were solved by shooting method. The effects of variable viscosity on 
hydromagnetic flow and heat transfer past a continuously moving porous boundary with radiation have been 
studied by Seddeek [12]. Hossain et al. [13] investigated the effect of radiation on the free convection flow of 
fluid with variable viscosity from a porous vertical plate. Using the Chebyshev finite-difference method, 
Elbarbary and Elgazery [14] investigated the effects of variable viscosity and variable thermal conductivity on 
heat transfer from moving surfaces with radiation. Rahman et al. [15] presented the effects of temperature 
dependent thermal conductivity on magneto hydrodynamic (MHD) free convection flow along a vertical flat 
plate with heat conduction. Mahanti and Gaur [16] studied the effects of varying viscosity and thermal 
conductivity on steady free convective flow and heat transfer along an isothermal vertical plate in the presence 
of a heat sink. 

These problems are analyzed in the absence of the effects of the Dufour and Soret numbers. Therefore, the 
objective of this study is to investigate the heat and mass transfer by natural convection from a semi infinite 
vertical plate, considering the Dufour and Soret effects with variable viscosity and thermal conductivity. 

II. MATHEMATICAL FORMULATION 

Consider a two dimensional unsteady flow of a viscous, incompressible fluid past a semi-infinite vertical 
plate, taking into account the Soret and Dufour effects. Both the Dufour and Soret effects are considered when 
the fluid is not chemically reacting. Assume that the x-axis is taken along the plate in the vertically upward 
direction and the y-axis is chosen normal to the plate as shown in Fig.1. The gravitational acceleration is acting 
downward. The surrounding stationary fluid temperature is assumed to be of the ambient temperature T∞. 
Initially, it is assumed that the plate and the fluid are at the same ambient temperature T∞. As time increases, the 
temperature of the plate is suddenly raised to Tw (> T∞) and is maintained at the same value. It is assumed that 
the effect of viscous dissipation is negligible in the energy equation. All the fluid physical properties are 
assumed to be constant except for the fluid viscosity, which varies exponentially with the fluid temperature, the 
thermal conductivity which varies linearly with the fluid temperature. 
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Fig. 1: Flow model of the problem 

Under these assumptions, the governing boundary layer equations of continuity, momentum and energy and 
mass with Boussinesq’s approximation are as follows (Eckert and Drake [17], Schlichting [18]): 
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Introducing the following non dimensional quantities 

 

( )
( )

( )
( )

1 1 1 1
4 2 4 2

2

3

2

, , , , ,

( ), , , = ,

) , , ,
)

(
(

w w

w w w

pwm T w m T

s p w m w

x yGr uLGr vLGr t Gr
X Y U V t

L L L

g L T TT T
C Gr N

T T T T

T TD k D k
Du Sr Pr = Sc

T T T k D

c cc c
c c

cc c
c c c c

υ
υ υ

β βθ
υ β

υρ υ
υ υ

− −

∗
∞ ∞∞ ∞

∞ ∞ ∞

∞∞

∞ ∞ ∞

′
= = = = =

−−= = =
− −

−
= = =

−

′ ′′ ′ −−
′ ′−

′ ′−
′ ′−

       (6) 

The variations of the normalized viscosity and thermal conductivity are written in the form (Elbashbeshy and 
Ibrahim [19] and Ockendon and Ockendon [20]): 
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The reduced equations of (1) to (4) by introducing the non-dimensional quantities are 
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The corresponding initial and boundary conditions of (5) are 
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III.  NUMERICAL TECHNIQUE 

 The governing equations (8) to (11) are unsteady, coupled and non-linear with initial and boundary 
conditions. The following implicit finite-difference method of the Crank-Nicolson type is used to solve the 
governing equations. The corresponding finite-difference equations [Ramachandra Prasad et al. [21] are 
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The solution domain, considered as a rectangle consists of grid points at which the discretization equations 
are applied. In this domain, by definition of the non dimensional quantity X, assumed in equation (6), X varies 
from 0 to 1, where X = 1 corresponds to the height of the plate. But the choice of value of Y, corresponding to Y 
= ∞, has an important influence of the solution. The effect of different values to represent Y =∞ on numerical 
scheme has been investigated and it is concluded that the value of Ymax = 20 is sufficiently large. Further larger 
values of Y produced the results with indistinguishable difference, where Ymax corresponds to Y = ∞, which lies 
well outside both the momentum and energy boundary layers. The maximum of Y was chosen as 20, after some 
preliminary investigations so that the last two boundary conditions of (12) are satisfied. 
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During any one time-step, the coefficients , ,,n n
i j i jU V  appearing in the scheme of finite difference 

equations of (8) to (11) are treated as constants, where the subscript i designates the grid point along X direction, 
j designates the grid point along Y direction and the superscript n along t direction. An appropriate mesh size 
considered for the calculation is ΔX = 0 .02, ΔY = 0.20 and time step Δt = 0.01. The values of U, V, θ, and C are 
known at all grid points at t = 0 from the initial conditions. The values of U, V, θ, and C at time level (n+1) 
using the known values at previous level (n) are calculated as follows: The finite-difference scheme of the 
equation (11) at every internal node point on a particular i-level constitute a tridiagonal system of equations 
which is solved by Thomas algorithm, as described in Carnahan et al. [22]. Thus the values of C are found at 
every nodal point on a particular i at time level (n+1). Similarly the values of θ are calculated from the finite-
difference equation of (10). Using the values of C and θ at time level (n+1), the values of U are found from the 
finite-difference scheme of the Equation (9) in a similar manner. Thus the values of C, θ and U are known on a 
particular i-level. The values of V are calculated explicitly using the finite-difference equation of (8) at every 
nodal point on a particular i-level at time level (n+1). This process is repeated for various i-levels. Thus the 
values of C, θ, U and V are known at all grid points in the rectangular region at time level (n+1). Computations 
are carried out until the steady-state is reached. The steady state solution is assumed to have been reached, when 
the absolute difference between the values of U as well as temperature θ and concentration C at two consecutive 
time steps are less than 10-5 at all grid points. 

The scheme is proved to be unconditionally stable by using the von-Neumann technique, as shown by 
Soundalgekar and Ganesan [23]. The local truncation error is O(Δt2 +ΔX + ΔY2), and it tends to zero as Δt, ΔX, 
and ΔY tend to zero. Hence, the scheme is compatible. The stability and compatibility ensure the convergence of 
the scheme. 

IV.  RESULTS AND DISCUSSION 

To get an insight into the physical situation of the problem, the values of velocity, temperature and 
concentration are calculated numerically for the different values of dimensionless parameters. The 
dimensionless numbers Du (Dufour number) and Sr (Soret number) which represent the diffusion-thermo and 
thermal-diffusion effects respectively, can take by their definition, arbitrary values, provided the value of their 
product is kept constant. The influences of the dimensionless parameters Du, Sr, λ, and γ on the flow field are 
analyzed for Pr = 0.71 (air), Pr = 7.0 (water), Sc = 0.22, and N = 5.0. 

The simulated results are presented to outline the physics involved in the effects of varying Du, Sr, λ, γ and 
Pr on the transient velocity, temperature and concentration profiles during transient and steady-state periods. 
Initially, the velocity profiles with value zero at the wall, reach their temporal maximum very close to the wall, 
and then decrease to zero as Y becomes large for all time t. The velocity profiles are much thinner for higher 
values of Prandtl number, because the velocity diffusion extends far from the wall. The dimensionless velocity 
profiles in the boundary layer for different parameters λ, γ, Du and Sr for air and water, are presented in Figs.2 
to 4. It is observed that the velocity increases, reaches the temporal maximum near the wall of the plate as the Sr 
increases, and then decays the free stream velocity. At the initial transient dimensionless velocity, the buoyancy-
induced flow velocity is relatively low. 

Fig. 2 shows that for cooling of the plate the velocity increases as the Soret number (Sr) increases. For 
example, when λ= 0.6, γ = 0.16, Du = 0.03, Sr = 2.0, Pr = 0.71, the velocity increases from the value zero at the 
wall, reaches the temporal maximum (U = 1.29821) at t = 12 very close to the wall and then slightly decreases 
monotonically to zero as Y becomes large for all time. It is observed that the time to reach the temporal 
maximum of the velocity and steady state decreases with increasing Soret number. This factor causes a decrease 
in the buoyancy force which decelerates the velocity of the flow. In Fig. 3, it is to be noted that with an 
increasing Du, the time to reach the temporal maximum (U = 1.04546) of the velocity increases, and then the 
velocity decreases to reach zero, whereas the time taken to reach the steady state are shown. In the steady state, 
the velocity increases as Du increases with time increasing. Fig. 4 shows the velocity profiles for different 
values of λ and γ, the velocity increases very closer to the wall and reaches the temporal maximum (U = 
0.99674), and then decreases to zero. It is observed that the time to reach the temporal maximum and steady 
state increases with increasing λ and γ for air, with fixed values of Du = 0.12 and Sr = 0.5. 
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Fig. 2: Velocity profile for different values of Sr (* Temporal Maximum) 

 
Fig. 3: Velocity profile for different values of Du (* Temporal Maximum) 

 

Fig. 4: Velocity profile for different values for λ and γ (* Temporal Maximum) 
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Figures 5 to 8 depict the steady state temperature profiles for different parameters. It can be observed that at 
the beginning there is no difference in the temperature profiles, with respect to time. Fig. 5 depicts that an 
increase in Sr results in decreasing the temperature profiles within the boundary layer, as well as the boundary 
layer thickness. 

The steady state temperature profiles for air and for the fixed values of λ = 0.6, γ = 0.16 and Sr = 0.5 are 
shown in Fig. 6. The decreasing value of Du affects the temperature decreasing in the boundary layer. From Fig. 
7, it is observed that the temperature decreases as the values of λ and γ parameters increase while the values    
Du = 0.12, Sr = 0.5 are fixed for air. Fig. 8 illustrates the effects of Du on the fluid temperature. It can be clearly 
seen from this Figure that the diffusion thermal effects slightly affect the fluid temperature. As the values of Du 
increase, the fluid temperature decreases for water. The steady state concentration profiles are shown in Fig. 9 
for the different values of thermal-diffusion (Sr). It shows that the increase in Sr leads to an increase in the value 
of concentration with time decreasing. It is to be noted that, for the value Sr = 2.0, the concentration increases 
very close to the wall, and decreases monotonically to reach zero. The concentration reaches the temporal 
maximum at the same value of Sr. 

 
Fig. 5: Steady state temperature profiles for different values of Sr (*Temporal maximum) 

 
Fig. 6: Steady state temperature profiles different values of Du (*Temporal maximum) 
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Fig. 7: Steady state temperature profiles for different values of λ and γ (*Temporal maximum) 

 
Fig. 8: Steady state temperature profiles for different values of Du (*Temporal maximum) 

   
Fig. 9: Steady state concentration profiles for different values of Sr (*Temporal maximum) 
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 Knowing the velocity, temperature and concentration field, it is customary to study the physical 
quantities of fundamental interest of the skin-friction, the rate of heat transfer and rate of concentration in state 
conditions. The local as well as average values of skin friction, Nusselt number and Sherwood number in 
dimensionless form are as follows:  

The shear stress at the plate is defined as 
0
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The average skin friction is  
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The local Nusselt number is defined by 
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Using the non-dimensional variables in equations (6) and (7), the non-dimensional form of local Nusselt number 

can be written as follows ( ) 1
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The average Nusselt number can be written as follows ( )
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The Sherwood number is defined by  
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Using the non-dimensional variables in equation (6), the non-dimensional form of local Sherwood number can 

be written as 
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The average Sherwood number is 
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The derivations involved in Equations (13) to (21) are evaluated using a five point approximation formula 
and the integrals are evaluated using the Newton’s cotes formula numerically. 

It is observed that, an increase in the Prandtl number leads to a decrease in the value of the skin-friction 
coefficient. It is also observed from Fig. 10 that the skin friction increases with an increase in the Sr for Pr value 
of air, while the skin friction increases with an increase in the value of both λ and γ parameters for Pr value of 
water. From Fig. 11 it is observed that, an increase in the Prandtl number leads to a decrease in the value of the 
heat transfer coefficient in terms of the Nusselt number (Nu). It can be seen from the same Figure that the heat 
transfer coefficient increases with an increase in the Sr for the Pr value of air, while the heat transfer coefficient 
decreases as increase in the value of both Du and Sr for the Pr value of water. 

The mass transfer coefficient in terms of the Sherwood number (Sh) for different values of Prandtl value is 
shown in Fig. 12. It represents the increase in the value of the Prandtl number and for the fixed values of Du = 
0.03, λ = 0.6 and γ = 0.16 lead to increase the mass transfer coefficient. The mass transfer coefficient decreases 
with an increase in the value of Sr for both the values of the Prandtl number for air and water. 

Fig.13 shows that for all the dimensionless parameters, the average skin friction increases monotonically, 
attains the temporal maximum and after some fluctuations reaches the steady state value. The average skin 
friction increases at small values of time t whereas at large values of t, it remains independent of t, i.e. the 
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average skin friction depends on time t only when t is small. As Sr increases, the average skin friction also 
increases. 

Fig. 14 shows that, the average Nusselt number decreases sharply at small values of time t, being unaffected 
by Sr, but at large values of t, it is independent of time. When time increases, the average Nusselt number 
increases and after some fluctuations, and reaches the asymptotic steady state. Fig. 15 shows the average 
Sherwood number for different values of λ and γ with fixed values of Pr = 7.0, Du = 0.12, Sr = 0.5. It can be 
seen that the average Sherwood number decreases and increases suddenly, again increases and after some 
fluctuations, reaches the steady state. The average Sherwood number is also not affected by the parameters λ 
and γ at small values of t. 

  
Fig. 10: Local skin friction 

 
Fig. 11: Local Nusselt Number 
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Fig. 12: Local Sherwood number 

 
Fig. 13: Average skin friction 

     
Fig. 14: Average Nusselt number 
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Fig. 15: Average Sherwood number 

V. CONCLUSIONS 

 In this analysis, the problem of the Dufour and Soret effects on the unsteady free convective flow past a 
semi-infinite vertical plate in the presence of variable viscosity and thermal conductivity is considered, and it is 
solved by implicit finite-difference method of the Crank-Nicolson type. This analysis concludes with the 
following results: 

The velocity increases with an increase in the Du and Sr numbers. The temperature decreases with an 
increase in Sr, variable viscosity and thermal conductivity parameters, with increasing time for air. But the 
temperature decreases as Du increases with time increasing for water. 

The concentration profiles increase with an increase of the Sr number, while decreases with an increase of 
Du as time increases for air. The concentration profiles decrease with an increase of Du as time decreases for 
water. The local skin friction coefficient increases on increasing the value of Sr, variable viscosity and thermal 
conductivity parameters for both air and water. The local Nusselt number increases with Du, Sr numbers 
increase for both air and water. 
Nomenclature 

C′  concentration 

wC′  concentration near the plate 

C  dimensionless concentration 

C∞′  concentration in the fluid far away from the plate 

fC
 

average skin-friction coefficient 

sC
 

concentration susceptibility 

fC
   

skin-friction coefficient 

pC
 

specific heat at constant temperature 

Dm the mass diffusivity 
Du Dufour number 
g acceleration due to gravity 
Gr Grashof number 

k thermal conductivity 

kT 
thermal diffusion ratio 

L length of the plate 
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Pr Prandtl number 
Sc Schmidt number 
Sr Soret number 
t′ time 
t dimensionless time 
T temperature of the fluid in the boundary layer 
T∞ ambient fluid temperature 
Tw plate temperature 
Tm mean fluid temperature 
u, v x and y component velocities respectively 
U, V X and Y component velocities respectively 
x, y dimensional coordinates along and normal   to the plate 
X, Y dimensionless coordinates along and normal to the plate 
Shx Sherwood number 
Sh Average Sherwood number 
N Buyoancy ratio 
NuX Local Nusselt number 
Nu average Nusselt number 
Greek symbols 

β coefficient of volume expansion 
β* coefficient of concentration expansion 
γ thermal conductivity variation parameter 

λ viscosity variation parameter 

μ fluid viscosity 
μ∞ fluid viscosity in free stream 
υ kinematic viscosity 
ρ density 
θ dimensionless temperature 
Subscripts 

w condition of the wall 
∞  free stream condition 
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