
Configuration Bitstream Mapping with
Programmable Resources on Spartan-3A

FPGA using XDL and FAR
Pravin N. Matte #1, Dr. Dilip D. Shah *2

Department of Electronics and Telecommunication,
G.H. Raisoni College of Engineering and Management, Wagholi, Pune, India

*Department of Electronics and Telecommunication Engineering,
JSPMs Imperial College of Engineering and Research, Wagholi, Pune, India.

1 pravin.matte@raisoni.net; 2dilip.d.shah@gmail.com

Abstract— Configuration bitstream in FPGA is specific to vendor. It is difficult to understand
bitstream format and eventually impossible to know how bits are placed in LUTs, flip flop, multiplexer,
input and output interconnection network in FPGA. Normally user is not interested in knowing internals
of FPGA, however it is believed that by opening the internals of FPGA, development would become very
fast as it is achieved by open source community. In this paper we have proposed a simplified methodology
to map configuration bitstream to its programmable resources targeting Spartan-3A FPGA. A simple
AND gate design implemented in VHDL under different constraints. Correlation between different
locations of AND gate is established with frame address register, XDL file report, FPGA editor and
device view in PlanAhead.

Keyword - Bitstream, Configuration memory, FPGA, FAR, NCD, XDL

I. INTRODUCTION

It is widely believed that the analysis of bitstream format is a tedious task. Increase in the complexity of
digital circuit design demand for FPGA with more resources is increasing. FPGA has applications in wide
variety of domains like space, telecommunications, networking, handheld devices etc. FPGA based industries
demand CAD tools for design and development to meet time-to-market design metric. Like in open source
communities, FPGAs development techniques are not open and certain things are vendor specific. Hence third
party tools development has limited scope. If bitstream format would have been opened to users then possibility
of cloning the device and IPs would have increased. Development on design tool side demands FPGAs internal
details. Knowing FPGA bitstream definitely helps further development. Beside this, research communities and
academicians are interested in knowing bitstream details. Limited work has been done in this direction.

A bitstream is a file that contains programming information for an FPGA. FPGAs bitstream is generated by
CAD tools and configures (reconfigures) resources on FPGA fabrics to implement desired design. Fig. 1 depicts
general structure of bitstream file during configuration. Bitstream file is viewed as file containing header for
device name, architecture, and date information. After the start header it has synchronization word, device
identification along with various device initialization commands. Most of the data is for actual configuration of
FPGA. Last part of bitstream again contains command registers like CRC, DESYNC etc. and then FPGA goes
into start sequence operation. These details are contains in bitstream file. Each FPGA device has its own
bitstream format to configure itself.

Fig. 1 General structure of bitstream file

Though fair amount of work is done to know bitstream format, this paper presents simple approach to
understand FPGA bitstream and its mapping with resources on FPGA. Section II focused on related work done.
FPGA generic architecture, design flow and bitstream format is described in section III. Preparation of
background information is presented in section IV. A simple approach to analyze FPGA bitstream is elaborated
in section V targeting Spartan-3A Xilinx FPGA. Results are discussed in section VI. At the end paper is
concluded with conclusion in section VII.

Design Name
Architecture
Date …

Synchronization Word,
Configuration & CMD Reg.
(followed by data)…

FARs & Frame’s
Data…

Configuration & CMD Reg. like CRC,
DESYNC, NOOP (followed by
data)…

Header Configuration Commands Configuration Data Configuration Commands

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Pravin N. Matte et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i2/181002026 Vol 10 No 2 Apr-May 2018 423

II. RELATED WORK

FPGAs configuration bitstream is the final output of any VLSI CAD tool design methodology. In [1]
database of mapping bitstream to their functional role is prepared using theoretical algorithm. This database is
utilized to produce net list from any bitstream. The work shown in [1] is for Xilinx Virtex-II devices.
Documentation on Xilinx Design Language (XDL) is scare. XDL provide access to almost all features of Xilinx
devices. Various use cases and elaborated documentation provided in [2]. In [3], a method is presented to
generate NCD from bitstream file.

Due to availability of official documents on internal architecture and configuration, it was possible for
researchers to build development tools for FPGA. Alex and Clifford reversed engineered Lattice
Semiconductor’s iCE40 FPGA. This was first step towards the source tool chain for single FPGA [4]. “Bil” a
reverse engineering tool presented in [5] retrieves netlist from bitstream for certain section of bitstream. VPR [6]
performs packing, placement and routing. It maps technology mapped netlist to hypothetical FPGA specified by
user. A low level bitstream manipulation tools BitMAT [7] and “BITMAN” [8] targeted Virtex- II FPGAs. A
Java library named “abit” for direct manipulation of Atmel FPSLIC series bitstream and partial reconfiguration
found in [9]. In [10] an open source tool based on library of micro-bitstream created for primitives and merged
for creating larger design with simple merging operations. An open source tool set for reconfigurable computing
presented in [11] is based on C++. Torc infrastructure can read, write, and manipulate EDIF and XDL netlist as
well as Xilinx bitstream packets (but not configuration frame internals). Currently supported devices include all
Virtex, VirtexE, Virtex2 pro, Virtex5, Virtex6, Virtex6L devices. PARBIT a tool in [12] extracts and relocates
Virtex partial bitstream. The RapidSmith project [13] provide exclusive platform for implementing experimental
idea, algorithms on Xilinx FPGAs.

Knowing bitstream format opens innovative approach for development in FPGA technology. Mostly, such
type of work depends upon available documentation from vendor. But the vendor does open fair amount of
information for end users and keeps certain information closed to avoid cloning of their devices. In this paper
we have proposed a simple approach to map configuration bitstream to FPGA resources.

III. FPGA GENERIC ARCHITECTURE AND DESIGN FLOW

FPGA means field programmable gate array. Any arbitrary digital function is implemented in FPGA. It can
be programmed to implement desired hardware on it. Basic building blocks of FPGAs are configuration logic
blocks (CLBs), I/O blocks, switch blocks, routing resources, memory blocks, and other dedicated functional
block. The Fig. 2 gives general architecture of FPGA and Spartan -3A FPGA layout as viewed in PlanAhead
design tool.

Fig. 2 (a) General architecture of FPGA

Fig. 2 (b) Spartan-3A layout in Plan Ahead

Fig. 2 FPGA architecture and PlanAhead view of Spartan-3A layout

A typical FPGA design flow consists of different stages like design entry, synthesis, mapping, place and route
and bitstream generation. Fig. 3 depicts FPGA design flow. Three main stages of design are design entry and
synthesis, design implementation and design verification [14]. Design entry is made either in schematic capture
or in hardware design languages or with both. Synthesis is the process by which a given design is converted to
logical design format (EDIF) or NGC file (by using Xilinx Synthesis Technology GUI). Design implementation
converts the logical design format into Native Circuit Description (NCD) file. NCD file contains the physical

Input output
Blocks

CLBs

Switch
Block

Interconnect

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Pravin N. Matte et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i2/181002026 Vol 10 No 2 Apr-May 2018 424

information of FPGAs. The bitstream file generated after this stage is used to program the FPGA. In the last
stage designer verifies whether the circuit meets timing and functionality requirements

Fig. 3 Typical FPGA design flow

IV. BACKGROUND: HDL-NCD-XDL

Listing 1 shows VHDL codes for two input AND gate. DPI1 and DIP2 are the two input ports and LED1 is
the output port. Fig. 4 represents RTL schematic and Fig. 5 shows schematic of AND gate generated after
VHDL codes compiled on Xilinx ISE Design Suite 14.7. Device utilization summary is given in Table 1. Other
relevant information is generated by the tool. Here we gathered information necessary for mapping of FPGA
configuration bitstream to its resources. “andGate.ncd” file is located in project folder directory. It is Native
Circuit Description file which contains how HDL codes are mapped to physical resources like LUTs, flip flops,
I/Os, routing etc. on FPGA. But it is not in human readable format. Xilinx Design Language is used to convert
NCD file into human readable format. A command like “xdl –ncd2xdl andGate.ncd” converts NCD to XDL file.
and Gate.xdc contains human readable information. A brief introduction of XDL is given by illustrating
“andGate” example.

Listing 1. VHDL code of AND gate

Fig.4 RTL schematic

Fig. 5 Schematic of AND gate

Design Entry HDL/
Schematic

Place and
Route

Bitstream
Generation

Mapping Synthesis
110011001111
111000111011
110001101111
111100011100

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Pravin N. Matte et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i2/181002026 Vol 10 No 2 Apr-May 2018 425

Table 1. Device Utilization Summary

Xilinx Design Languages (XDL)

The NCD file contains all necessary information to implement the design on FPGA. But the NCD file format
is Xilinx specific and it is not possible to analyze it. However, Xilinx has provided Xilinx Design Language in
Xilinx ISE Design suite. It converts NCD file into XDL file which is human readable. Less information is
available on XDL documentation.

XDL File Format

An XDL file is a text file contains information about the name of the design, intended Xilinx FPGA device
and cfg attribute which allows user to configure the certain aspects of the design. It also lists logical slices, nets
for routing design. The keyword “inst” is used to begin the instance statement. Instance is the instance of FPGA
primitive. After the instance keyword the name of the instance is mentioned. It is followed by instance type.
Placement of the slice is described by the keyword “placed” or “unplaced” after the instance type. A string
beginning with “cfg” keyword used to configure the LUT contents and other functionality. Instance statement
for DIP1 in case of AND gate example is given below.

inst "DIP1" "IBUF", placed RIOIS_X17Y1 P78

cfg " DELAY_ADJ_ATTRBOX::FIXED GTSATTRBOX::#OFF IBUF_DELAY_VALUE::DLY0

 ICEINV::#OFF ICLK1INV::#OFF ICLK2INV::#OFF IDDRIN_MUX::#OFF IFD_DELAY_VALUE::DLY0

 IFF1::#OFF IFF1_INIT_ATTR::#OFF IFF1_SR_ATTR::#OFF IFF2::#OFF IFF2_INIT_ATTR::#OFF

 IFF2_SR_ATTR::#OFF IFFATTRBOX::#OFF IFFDMUX::#OFF IMUX::1 IOATTRBOX::LVCMOS25

 IREV_USED::#OFF ISR_USED::#OFF MISRATTRBOX::#OFF MISR_CLK_SELECT::#OFF

 O1INV::#OFF O1_DDRMUX::#OFF O2INV::#OFF O2_DDRMUX::#OFF OCEINV::#OFF

 ODDROUT1_MUX::#OFF ODDROUT2_MUX::#OFF OFF1::#OFF OFF1_INIT_ATTR::#OFF

 OFF1_SR_ATTR::#OFF OFF2::#OFF OFF2_INIT_ATTR::#OFF OFF2_SR_ATTR::#OFF

 OFFATTRBOX::#OFF OMUX::#OFF OREV_USED::#OFF OSR_USED::#OFF OTCLK1INV::#OFF

 OTCLK2INV::#OFF PCICE_MUX::#OFF PCIRDY_MUX::#OFF PULL::#OFF REVINV::#OFF

 SEL_MUX::0 SLEW::#OFF SRINV::#OFF T1INV::#OFF T2INV::#OFF TCEINV::#OFF

 TFF1::#OFF TFF1_INIT_ATTR::#OFF TFF1_SR_ATTR::#OFF TFF2::#OFF TFF2_INIT_ATTR::#OFF

 TFF2_SR_ATTR::#OFF TFFATTRBOX::#OFF TMUX::#OFF TREV_USED::#OFF TSMUX::#OFF

 TSR_USED::#OFF T_USED::#OFF DELAY_ADJ_BBOX:DIP1.DELAY_ADJ: INBUF:DIP1_IBUF:

 PAD:DIP1: "

 ;

The logic blocks are interconnected by the nets. FPGA fabric contains the static wires. The nets are used for
routing purpose. A net has “outpin” as one starting point and “inpin” as endpoints (it can be multiple). The
configuration in FPGAs routing structure is the connection between these nets. In Xilinx terminology these are
called pips (programmable interconnect points). The inpin and outpin are connected by pip declaration. A set of
pips declarations constitutes a single net. Pip is declared as “pip LOC S -> E” where pip is keyword, LOC is the
location of pip, S is the starting point and E is the endpoint of the wire. Finally summary statements give statics
of modules, instances and nets used in the design. Listing 2 summaries the description of XDL file format for
“andGate” example compiled for XC3S50A Spartan-3A FPGA. Latter in the paper this design is named as
“default” as it is compiled without any constraint.

Logic Utilization used Available Utilization

Number of 4 input LUTs 1 1,408 1%

Number of occupied Slices 1 704 1%

Number of Slices containing only related logic 1 1 100%

Number of Slices containing unrelated logic 0 1 0%

Total Number of 4 input LUTs 1 1,408 1%

Number of bonded IOBs 3 108 2%

Average Fanout of Non-Clock Nets 1.00

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Pravin N. Matte et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i2/181002026 Vol 10 No 2 Apr-May 2018 426

Listing 2. XDL file from NCD file for AND gate default design example.

Note: In the above listing “cfg” keyword and its listing is not included.

V. METHODOLOGY AND IMPLEMENTATION

Initially an AND gate was designed and implemented in VHDL hardware description language without any
constraints. Latter same VHDL codes were used to implement AND gate design with different constraints so
that AND gate will map to different location. The pblock is used for restricting AND gate on FPGA layout
along with defined I/O pins location is mentioned in the Table 2. In each case, design is compiled on Xilinx ISE
14.7 Design Suite [15]. Ensure that generate debug is enabled in process properties dialog box. This is shown in
Fig. 6. This will generate FAR address for each configuration frame.

Fig. 7 shows location of CLBs on FPGA layout selected for experimentation for default, const_1 and const_2.
After compiling same AND gate design with different constraints of slices and I/O pins assignment, a bit file
database is prepared. Each “andGate.bit” file is analysed separately. Configuration bitstream file is opened in
Hex Editor Neo. A frame containing all zero in bitstream file is selected. After that with the help of hex editor
all such frames containing zeros are found out. An observation of starting portion and ending portion of the
frame is noted. The important part of bitstream is the configuration data and its addresses. For all the designs,
FAR addresses containing configuration information are tabulated. Frame addresses which points to zero
configuration information are neglected. This process will separate out bitstream information into four parts:
starting, ending, design information and no information of design. The design information portion is pointed by
FAR register addresses. PlanAhead tool is used to observe device view for mapped resources on Spartan-3A in
FPGA layout. An FPGA editor [16] is used to view how resources are placed and routed.

Table 2. Floor planning of AND gate and constraints

==
XDL NCD CONVERSION MODE $Revision: 1.01$
time: Sat Jan 27 00:55:22 2018
==
The syntax for the design statement is:
==
design "andGate" xc3s50atq144-5 v3.2 ,
cfg "
_DESIGN_PROP::PK_NGMTIMESTAMP:1516987046"

;
==

inst "DIP1" "IBUF",placed RIOIS_X17Y1 P78
inst "DIP2" "IBUF",placed BIOIS_X16Y0 P72
inst "LED1" "IOB",placed RIOIS_X17Y1 P76
inst "LED1_OBUF" "SLICEL",placed CLB_X16Y1
SLICE_X23Y0

==
net "DIP1_IBUF" ,
 outpin "DIP1" I ,
 inpin "LED1_OBUF" G1 ,
 pip CLB_X16Y1 G1_B1 -> G1_B_PINWIRE1 ,
 pip CLB_X16Y1 OMUX_W1 -> G1_B1 ,
 pip RIOIS_X17Y1 I1_PINWIRE -> IOIS_Y1 ,
 pip RIOIS_X17Y1 IOIS_Y1 -> OMUX1 ,
 ;

net "DIP2" , cfg " _BELSIG:PAD,PAD,DIP2:DIP2",
 ;
net "DIP2_IBUF" ,
 outpin "DIP2" I ,
 inpin "LED1_OBUF" G4 ,
 pip BIOIS_X16Y0 I1_PINWIRE -> IOIS_Y1 ,
 pip BIOIS_X16Y0 IOIS_Y1 -> OMUX15 ,
 pip CLB_X16Y1 G4_B1 -> G4_B_PINWIRE1 ,
 pip CLB_X16Y1 OMUX_N15 -> G4_B1 ,
 ;
net "LED1" , cfg " _BELSIG:PAD,PAD,LED1:LED1",
 ;
net "LED1_OBUF" ,
 outpin "LED1_OBUF" Y ,
 inpin "LED1" O1 ,
 pip CLB_X16Y1 Y1 -> E2BEG4 ,

 pip RIOIS_X17Y1 E2MID4 -> IOIS_G3_B0 , ;
====================================
SUMMARY
Number of Module Defs: 0
Number of Module Insts: 0
Number of Primitive Insts: 4
Number of Nets: 6

Const. No. Pblock Range CLB DIP1 DIP2 LED1

Default NA CLB_X16Y1
RIOSIS_X17Y1 BIOIS_X16Y0 RIOIS_X17Y1

P78 P72 P76

Const_1 SLICE_X20Y28:SLICE_X21Y29 CLB_X15Y15
RIOSIS_X17Y15 RIOSIS_X17Y15 RIOSIS_X17Y14

P101 P103 P104

Const_2 SLICE_X0Y30:SLICE_X1Y31 CLB_X1Y16
TOIOIB_X1Y17 TOIOIB_X1Y17 TOIOIB_X1Y17

P141 P140 P143

Const_3 SLICE_X0Y0:SLICE_X1Y1 CLB_X1Y1
BIOIB_X1Y0 BIOIB_X1Y0 BIOIS_X2Y0 P39

P37 P38 P39

Const_4 SLICE_X10Y20:SLICE_X11Y21 CLB_X6Y11
LIOIS_PCIX0Y11 LIOIS_PCIX0Y11 LIOIS_PCIX0Y11

P12 P13 P10

Const_5 SLICE_X2Y20:SLICE_X3Y21 CLB_X2Y11
LIOIS_PCIX0Y11 LIOIS_PCIX0Y11 LIOIS_PCIX0Y11

P12 P13 P10

Const_6 SLICE_X4Y20:SLICE_X5Y21 CLB_X3Y11
LIOIS_PCIX0Y11 LIOIS_PCIX0Y11 LIOIS_PCIX0Y11

P12 P13 P10

Const_7 SLICE_X6Y20:SLICE_X7Y21 CLB_X4Y11
LIOIS_PCIX0Y11 LIOIS_PCIX0Y11 LIOIS_PCIX0Y11

P12 P13 P10

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Pravin N. Matte et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i2/181002026 Vol 10 No 2 Apr-May 2018 427

Fig. 6 Enable debugging of bitstream in process properties of generate Programming

A. Default on device layout A. Default zoom view

B. Const_1 on device layout B. Const_1 zoom view

Const. No. Pblock Range CLB DIP1 DIP2 LED1

Const_8 SLICE_X8Y20:SLICE_X9Y21 CLB_X5Y11
LIOIS_PCIX0Y11 LIOIS_PCIX0Y11 LIOIS_PCIX0Y11

P12 P13 P10

Const_9 SLICE_X2Y22:SLICE_X3Y23 CLB_X2Y12
LIOIS_PCIX0Y11 LIOIS_PCIX0Y11 LIOIS_PCIX0Y11

P12 P13 P10

Const_10 SLICE_X2Y26:SLICE_X3Y27 CLB_X2Y14
LIOIS_PCIX0Y11 LIOIS_PCIX0Y11 LIOIS_PCIX0Y11

P12 P13 P10

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Pravin N. Matte et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i2/181002026 Vol 10 No 2 Apr-May 2018 428

C. Const_2 on device layout C. Const_2 zoom view

Fig. 7 Different CLB location selections with constraints

VI. RESULTS AND DISCUSSION

Analysis of Configuration Bitstream

Bitstream files consist of a start header (Fig. 8), configuration data, bitstream final command (Fig.10) and
start-up sequence. The start header contains information like design name, target device, file modification time,
dummy word, synchronization word, reset CRC, device ID code, etc. The packets contain configuration
commands and configuration data. The small state machine in FPGA controls configuration of programmable
resources on FPGA. The command register in FPGA is either read or written by configuration information in
data frames in bitstream. Always action taken by state machines is as per the command registers data. The data
frames are loaded with configuration data as pointed by the frame address register (FAR). Configuration data
frames can be, single frame, set of frames or full configuration space. During continuous writing of
configuration data into FPGA, the FAR is automatically incremented after every FDRI write [17]. In this case
frame length register (FLR) contains the length of data frame. It is written before the initiation of command to
load block of data. Finally START, CRC checksum DESYNCH command are executed towards the end of
bitstream file as shown in Figure 10 and Figure 11. Figure 8 and Fig. 10 shows starting and ending part of the
bitstream file of AND gate example. The interpretation of each word in the frame is explained in Fig. 9 and
Fig.11.

Fig 8 Start portion of bitstream file (AND Gate)

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Pravin N. Matte et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i2/181002026 Vol 10 No 2 Apr-May 2018 429

D
um

m
y

w
or

d

S
yn

c
W

or
d

T
yp

e
1

W
ri

te
 2

 w
or

ds
 to

 L
O

U
T

D
at

a
W

or
d

0

D
at

a
W

or
d

1

T
yp

e
1

W
ri

te
 1

 w
or

d
 W

C
F

G

D
at

a
W

or
d

0

T
yp

e
1

N
O

O
P

T
yp

e
1

W
ri

te
 1

w
or

d
to

 C
O

R
2

D
at

a
W

or
d

0

T
yp

e
1

W
ri

te
 1

 w
or

d
 to

C

C
L

K
_F

R
E

Q

D
at

a
W

or
d

0

T
yp

e
1

W
ri

te
 1

 w
or

d
to

 F
L

R

D
at

a
W

or
d

0

T
yp

e
1

W
ri

te
 1

 w
or

d
to

 C
O

R
1

D
at

a
W

or
d

0

T
yp

e
1

W
ri

te
 2

 w
or

d
to

ID
C

O
D

E

D
at

a
W

or
d

0

D
at

a
W

or
d

1

T
yp

e
1

W
ri

te
 1

 w
or

d
to

 M
A

S
K

D
at

a
W

or
d

0

T
yp

e
1

W
ri

te
 1

 w
or

d
to

 C
T

L

D
at

a
W

or
d

0
T

yp
e

1
W

ri
te

 1
 w

or
d

to

P
W

R
D

N
_R

E
G

D
at

a
W

or
d

0

F
F

F
F

A
A

99

31
22

0 0

30
A

1

7

20
00

31
61

09
E

E

33
21

3C
0F

31
A

1

49

31
41

2F
00

31
C

2

22
1

93

30
E

1

F
F

C
F

30
C

1

81

31
81

88
1

T
yp

e
1

w
ri

te
 1

 w
or

d
to

 H
C

_O
P

T
_R

E
G

D
at

a
w

or
d

0

T
yp

e
1

w
ri

te
 1

 w
or

d
to

 P
U

_G
W

E

D
at

a
w

or
d

0

T
yp

e
1

w
ri

te
 1

 w
or

d
to

 P
U

_G
T

S

D
at

a
w

or
d

0

T
yp

e
1

w
ri

te
 1

 w
or

d
to

 M
O

D
E

_R
E

G

D
at

a
w

or
d

0

T
yp

e
1

w
ri

te
 1

 w
or

d
to

G

E
N

E
R

A
L

1_
R

E
G

D
at

a
w

or
d

0
T

yp
e

1
w

ri
te

 1
 w

or
d

to

G
E

N
E

R
A

L
2

R
E

G
D

at
a

w
or

d
0

T
yp

e
1

w
ri

te
 1

 w
or

d
to

 S
E

U
_O

P
T

D
at

a
w

or
d

0

T
yp

e
1

w
ri

te
 2

 w
or

ds
 to

E

X
P

_S
IG

N
_R

E
G

D
at

a
w

or
d

0

D
at

a
w

or
d

1

T
yp

e
1

w
ri

te
 2

 w
or

ds
 to

 F
A

R
_M

A
J

F
A

R
_M

A
J

F
A

R
_M

IN

T
yp

e
1

w
ri

te
 1

 w
or

d
to

 C
M

D

W
C

F
G

 c
om

m
an

d

T
yp

e
2

w
ri

te
 0

 w
or

ds
 to

 F
D

R
I

D
at

a
W

or
d

0

D
at

a
W

or
d

1

32
01

00
1F

32
C

1

5 32
0 4

32
A

1

00
0E

32
61

0

32
81

0

33
41

18
F

2

33
62

0 0

30
22

0 0

30
A

1

1

50
60

0

00
4A

Fig.9 Decoding of start portion of bitstream file

Fig.10 End portion of bitstream file

E
xp

la
na

ti
on

C
R

C
 R

eg
is

te
r

us
es

a
22

-b
it

 C
R

C
 c

he
ck

su
m

D
at

a
w

or
d

0

D
at

a
w

or
d

1

T
yp

e
1

w
ri

te
 1

 w
or

d
to

 C
M

D

L
F

R
M

 c
om

m
an

d

T
yp

e
1

N
O

O
P

T
yp

e
1

N
O

O
P

T
yp

e
1

N
O

O
P

T
yp

e
1

N
O

O
P

T
yp

e
1

w
ri

te
 1

 w
or

d
to

 C
M

D

S
T

A
R

T
 c

om
m

an
d

M
as

ki
ng

 R
eg

is
te

r
fo

r
C

T
L

D
at

a
W

or
d

0

C
R

C
 R

eg
is

te
r

us
es

 a
 2

2-
bi

t
C

R
C

 c
he

ck
su

m

D
at

a
w

or
d

0

D
at

a
w

or
d

1

T
yp

e
1

w
ri

te
 1

 w
or

d
to

 C
M

D

T
yp

e
1

N
O

O
P

 (
 9

 N
O

O
P

)

D
E

S
Y

N
C

 c
om

m
an

d

T
yp

e
1

N
O

O
P

C
on

f.

D
at

a

30
02

13

77
E

7

30
A

1

3

20
00

20
00

20
00

20
00

30
A

1

5

30
E

1

81

30
02

00
0E

79
C

7

30
A

1

20
00

00
0D

20
00

Fig. 11 Decoding of end portion of bitstream file

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Pravin N. Matte et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i2/181002026 Vol 10 No 2 Apr-May 2018 430

Decoding of Frame Address Register (FAR)

Frame addresses decoded for each of the design is shown in Table 3. All designs belongs to block type 0
containing CLBs, IOBs information. Major address selects major column and minor address selects memory-
cell address line within a major column. Column labelled with “M” indicates major address whereas “m”
indicates minor address of frames. The addressing scheme gives the idea of the columns where the design lies
vertically. Frame addresses and total number of frames required for implementation of design varies according
to design type.

Table 3. Decoding of frame address register

default Const_1 Const_2 Const_3 Const_4 Const_5 Const_6 Const_7 Const_8 Const_9 Const_10

S
N

M m M m M m M m M m M M M m M m M m M m M m

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

2 1

3 14 3 13 0 3 0 3 3 2 0 2 0 2 0 2 0 2 0 2 0 2 0

4 14 4 13 1 3 1 3 5 2 1 2 1 2 1 2 1 2 1 2 1 2 1

5 14 5 13 7 3 4 3 6 2 10 2 9 2 10 2 9 2 9 2 10 2 6

6 14 6 13 9 3 5 3 7 2 14 2 13 2 13 2 11 2 17 2 14 2 7

7 14 7 13 11 3 6 3 8 2 15 2 15 2 14 2 12 2 18 2 15 2 9

8 14 8 14 14 3 7 3 9 2 17 3 13 2 15 3 13 4 13 2 17 3 13

9 14 10 14 15 3 8 3 10 2 18 3 14 4 13 3 14 4 14 2 18 4 0

10 14 11 15 0 3 9 3 11 8 0 4 0 4 15 5 13 6 13 8 0 4 1

11 14 12 15 1 3 10 3 12 8 1 4 1 5 0 5 14 6 14 8 1 4 6

12 14 13 15 9 3 11 3 13 8 8 4 6 5 1 6 0 7 0 8 8 4 8

13 15 0 15 14 3 12 3 14 8 9 4 8 5 8 6 1 7 1 8 9 4 9

14 15 1 16 0 3 13 4 0 8 11 4 9 5 9 6 6 7 6 8 11 4 11

15 15 7 16 1 3 15 4 1 8 12 4 11 5 11 6 9 7 9 8 12 4 12

16 15 11 3 16 4 8 8 13 4 12 5 12 6 12 7 10 8 13

17 15 12 3 17 4 10 8 17 5 17 7 11 8 17

18 16 0 3 18 4 11 7 12

19 16 1 4 18 4 12 8 14

20 4 14

21 4 15

Note: “M” indicates Major Address and “m” indicates minor address.

Matching and Mismatching Patterns in Configuration Bitstream

Extended Spartan-3A device, XC3S50A has 367 device frames. Result of match and mismatch pattern in
configuration bitstream shown in Fig. 12.

Fig.12 Match and mismatch patterns in configuration bitstream

Match Pattern Mismatch Pattern
31 22 XX XX XX XX

50 60 00 00 00 4A

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Pravin N. Matte et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i2/181002026 Vol 10 No 2 Apr-May 2018 431

Table 4 indicated the count of match and mismatch patterns as observed in each bitstream file. Also, it gives
total count of combined pattern. The frame address for which mismatch pattern were observed are mentioned in
Table 3. The mismatch pattern in bitstream file contains information about the implemented designs.

Table 4. Match and Mismatch Patterns in Configuration Bitstream

Constraint No Pattern Match Found Pattern Mismatch Total Pattern

Default 349 19 368

Const_1 353 15 368

Const_2 349 19 368

Const_3 347 21 368

Const_4 351 17 368

Const_5 352 16 368

Const_6 351 17 368

Const_7 351 16 368

Const_8 349 19 368

Const_9 353 15 368

Const_10 353 15 368

Though the HDL codes are same for each design, the location of each design is different on FPGA tiles. For
each of the design the mismatch patterns count is different. This is because the routing structure is different for
each design. Routing of designs viewed in FPGA editor. Fig. 13 (a) depicts routing structure for default design.
Three switch boxes are used for routing. Default design is located by placement and routing tool at bottom right
corner of the layout. Fig. 13(b) depicts routing structure for design with const_4. This design resides in middle
portion of the layout.

For the default design LUT belongs to SLICE_X23Y0 of CLB_X16Y1. This is also included in statement,
“inst "LED1_OBUF" "SLICEL", placed CLB_X16Y1 SLICE_X23Y0” in XDL file generated from NCD file.
Also the instance statement for instances DIP1, DIP2 and LED1 are : inst "DIP1" "IBUF", placed
RIOIS_X17Y1 P78 , inst "DIP2" "IBUF", placed BIOIS_X16Y0 P72, inst "LED1" "IOB", placed
RIOIS_X17Y1 P76 respectively. The instance view shown in Fig. 14

Fig. 13 (a) Default Design

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Pravin N. Matte et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i2/181002026 Vol 10 No 2 Apr-May 2018 432

Fig. 13 (b) Design with Const_4

Fig. 13 The routing structure

Fig. 14 (a) Location on FPGA layout

Fig. 14 (b) Zoom view of design

Fig. 14 Location of default design on FPGA

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Pravin N. Matte et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i2/181002026 Vol 10 No 2 Apr-May 2018 433

The detail view of SLICE_X23Y0 as viewed in FPGA editor is depicted Fig. 15. Likewise view for other
instances generated and routing of nets related with XDL file obtained in listing 2.

Fig. 15 LUT mapped on slice

VII. CONCLUSION

A simplified straight approach to map FPGAs resources to its HDL description is demonstrated in this paper.
We found that information in XDL file derived from NCD file is in human readable form and helps to develop
the understanding of FPGA design layout. Xilinx ISE Design suite and PlanAhead tool played vital role in
analysis. Though we are able to locate FPGA design location vertically with addresses information in
FAR_MAJ register, configuration information pointed by FAR_MIN address register is yet not decoded for
Spartan-3A FPGA by our approach. We observed that as we move any design from bottom-left position to top-
left position to top-right position to top-bottom position, the configuration information in bitstream goes away
and away form starting position of bitstream file. The addition of “Match Pattern” and the “Mismatch Pattern”
in configuration bitstream file equals 368 for all design under study.

REFERENCES
[1] J.-B. Note and Eric Rannaud, “From the bitstream to the netlist", in Proceedings of the 2008 ACM/SIGDA 16th Annual International

Symposium on Field-Programmable Gate Arrays, FPGA 2008 (Monterey, California), pp. 264-264, February 24-26, 2008,
[2] C. Beckhoff, D. Koch, and J. Torresen, “The xilinx design language (xdl): Tutorial and use cases," in Reconfigurable Communication-

centric Systems-on-Chip (ReCoSoC), 6th International Workshop, pp. 1-8, 2011.
[3] Z. Ding, Q.Wu, Y. Zhang, and L. Zhu, “Deriving an NCD file from an FPGA bitstream: Methodology, architecture and evaluation”,

Microprocessors and Microsystems, vol 37, pp. 299-312, May 2013,
[4] Joushua Vasquez, “Reverse Engineering Lattice’s ICE40 FPGA Bitstream,” https://hackaday.com/2015/03/29/reverse-engineering-

lattices-ice40-fpga-bitstream/
[5] F. Benz, A. Seffrin, and S. Huss, “Bil: A tool-chain for bitstream reverse-engineering,", in Field Programmable Logic and

Applications (FPL), 22nd International Conference, 2012, pp. 735-738.
[6] Vaughn Betz and Jonathan Rose, “VPR: A new packing, placement and routing tool for FPGA research,” International Workshop on

Field Programmable Logic and Applications, 1997.
[7] Casey J Morford, “BitMaT - Bitstream Manipulation Tool for Xilinx FPGAs,” Master thesis. December 15th, 2005 Bradley

Department of Electrical and Computer Engineering Blacksburg, Virginia.
[8] Khoa Dang Pham, Edson Horta and Dirk Koch, “BITMAN: A Tool and API for FPGA Bitstream Manipulations,” Design, Automation

& Test in Europe Conference & Exhibition (DATE), 27-31 March 2017.
[9] Adam Megacz, “A Library and Platform for FPGA Bitstream Manipulation,” 15th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM 2007), 23-25 April 2006, PP 45-54.
[10] R. Soni, N. Steiner, and M. French, “Open-source bitstream generation," in Field-Programmable Custom Computing

Machines”(FCCM), IEEE 21st Annual International Symposium , 2013, pp. 105-112.
[11] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French, “Torc: Towards an open-source tool flow", 19th International

Symposium on Field-Programmable Gate Arrays (FPGA 2011), February 27-March 1, 2011.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Pravin N. Matte et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i2/181002026 Vol 10 No 2 Apr-May 2018 434

[12] Edson L. Horta, John W. Lockwood, “PARBIT: A Tool to transform bitfiles to implement partial reconfiguration of Field
Programmable Gate Arrays (FPGAs),” Report Number: WUCS-01-13, Computer Science and Engineering, Washington University in
St. Louis, 2001.

[13] C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, and B. Hutchings, “Rapid prototyping tools for FPGA designs: RapidSmith,”
International Conference on Field-Programmable Technology (FPT’10), December 2010.

[14] Xilinx, “Command Line Tool User Guide, UG628 (v 14.7), October 2, 2013,”
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/devref.pdf

[15] Xilinx, “ISE Design Suite 14: Release Notes, Installation, and Licensing.UG631 (v14.7) October 2, 2013,”
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/irn.pdf

[16] Xilinx, “FPGA Editor Guide – 2.1i,”
http://ebook.pldworld.com/_semiconductors/Xilinx/Foundation/ISE/3.3i/Documentation/fpedit.pdf

[17] Xilinx, “Spartan-3 Generation Configuration User Guide (UG332 (v1.7) January 27, 2015 2.1),”
https://www.xilinx.com/support/documentation/user_guides/ug332.pdf.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Pravin N. Matte et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2018/v10i2/181002026 Vol 10 No 2 Apr-May 2018 435

	Configuration Bitstream Mapping withProgrammable Resources on Spartan-3AFPGA using XDL and FAR
	Abstract
	Keyword
	I. INTRODUCTION
	II. RELATED WORK
	III. FPGA GENERIC ARCHITECTURE AND DESIGN FLOW
	IV. BACKGROUND: HDL-NCD-XDL
	V. METHODOLOGY AND IMPLEMENTATION
	VI. RESULTS AND DISCUSSION
	VII. CONCLUSION
	REFERENCES

