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Abstract—We study the selection variables (predictors) on multiple linear regression model (MLRM). 
The best subset (Cp Mallow) and the stepwise (forward selection and backward elimination) methods are 
used to identify a best model on the MLRM. A simulation study is conducted using secondary data on Y 
(percentage of poverty line) and four predictors X1 (jobless), X2  (population growth rate),  X3  (life 
expectancy), and X4 (length of study). The result showed that the best model of the forward selection and 

backward elimination are similar, X1 and X3, are significant, with the model 0 1 1 3 3
ˆ ˆ ˆˆiy x x     , but 

the forward selection (with 2 steps) is more efficient than backward elimination (with 3 steps). 
Unfortunately, the best subset method has a different selection variables, here X2 is also significant, so the 

model is 0 1 1 2 2 3 3
ˆ ˆ ˆ ˆˆiy x x x       . Finally, we conclude that the best model is 

0 1 1 3 3
ˆ ˆ ˆˆ .iy x x      This is due to the both variables  X1 and X3 are available on the three tests, 

namely (1) correlation testing (partial test), (2) stepwise method, and (3) best subset methodFor your 
paper to be published in the conference proceedings, you must use this document as both an instruction 
set and as a template into which you can type your own text.  If your paper does not conform to the 
required format, you will be asked to fix it. 
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I. INTRODUCTION 

Generally, inferences about population parameter can be drawn from sample, and increasing a number of 
sample will affect significantly to the quality of inferences (Soejoeti, 2010). More detail about this, Bancrof [21] 
already studied to improve the inferences population using non-sample prior information (NSPI) from trusted 
sources. Therefore, we need sampling to get the eligible and representative  sample (n) from population  (N), 
with small error on  level of significance ( ) , 0.01,0.05 and or 0.10.   Following, Bhatacharya and 

Johnson [12], Walpole and Myers [19] and Bluman [1], the sample size (n)  is then formulated  by 
2

/ 2Zn d
    

 
, where d is determined by researcher,  /2Z  is from  standard normal distribution, and 2  

is unknown variance. Furthermore, from the pair of data sample ( , ), 1,2, ,i ix y i n  , we then estimate the 

linier regression model of  the multiple regression model (MLRM) as 0 1 1
ˆ ˆ ˆˆi p py x x      , where ix  

is a predictor and iy  is a response. Note that the general model of the MLRM is given 

as 0 1 1i p p iy x x e       . To ensure that the model is significant, we then test the significant model 

of the ˆiy  to be recommended to users. Moreover, the model ( ˆiy  ) is generally tested using three criteria, namely 

(1) the coefficient determination (R2), (2)  analysis of variance (Anova) with F test, and or (3) partial (Draper 
and Smith, [21]). In this case, some assumptions of the regression model are also tested, such as (1) normality 
test and random error of (2) autocorrelation of the error, (3) heteroscedasticity and (4) 

multicollinearity problem among predictors.  
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In addition, the paper is focused on the best subset and stepwise methods in getting the best model on the 
MLRM. Here, we noted many authors have been studied about the selection variables on regression model, such 
as  Draper and Smith [21], Gujarati [7], Gujarati [8], Ghozali [13], Kutner et al.[15], Montgomery [5], 
Montgomery [6], Bhattacharyya and Johnson [12], Greene [22], Baltagi [2], Baltagi [3], Mendenhall [23], 
Mendenhall and Sincich [24], Bluman [1], Huggins and Staudte [20], Iriawan and Astuti [16], Graybil and Iyer 
[10], Walpole and Myers [18], Walpole et al. [19] and Pratikno [4]. Here, Pratikno [4] have been studied testing 
of the hypothesis tests on regression models using power and size of the hypothesis testing. 

In this paper, the introduction is presented in Section 1. The regression model, best subset and stepwise 
methods are given in Section 2. A simulation is then obtained in Section 3. Section 4 described the conclusion 
of the research. document is a template.  

II. REGRESSION MODEL, BEST SUBSET AND STEPWISE METHODS 

2.1. Multiple Regression Model 

For an n pair of observations on p independent variables (X1,…,Xp) and one dependent variable (Y), (Xij,Yi), 
for i=1,2,...,n and j = 1,2,...,p, the multiple regression model (in matrix) is given by 

 Y X e 
      (1) 

Here,  is a (  dimensional column vector of unknown regression parameters, 

 is  vector of response variables, X is a matrix of know fixed values 
of the independent variables an e is the error term which is assumed to be identically and independently 
distributed as . Here, In is the identity matrix of order n and  is the common variance of the 
error variables.  Following Montgomery [5] and Graybil and Iyer [10], the estimate coefficient regression model 
in matrix is then given as 

t 1ˆ =(X ) tX X Y 
      (2) 

Furthermore, we test the hypothesis testing of the, H0 : β1 = β2=…= βp=0. Here, Anova (F test)  is used, 
and it is presented in Table 1. 

Table 1. Anova of the MLRM with p independent variables 

Source of 
Variance 

Degree of 
freedom (df) 

Sum Square 
(SS) 

Mean 
Square (MS)

F* 

Regression p SSR MSR 
*

; ; ( 1)p n p

MSR
F F

MSE     W

e then reject H0  
Error n – (p+1) SSE MSE = s2 

Total n-1 SST  

Note that SSE is sum square error, SST is sum square total and MSE is mean square error. Following 
Montgomery [5], we must test the assumptions of the MLRM, such as (1) the multicollinearity is tested using 
variance inflaction factor (VIF), that is VIF > 10, or F test is significant but t is not. We guarantee that there is 
no autocorelation of the error term  and there is no  heteroscedasticity. Moreover, Gujarati [7] showed that if the 

plot of error versus iX  going to be large (see Figure 1.), then iX  and iY   must be divided
 
by

 iX  in order to 

get the eligible data. 
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Figure 1. Plot between  error ie  and  weighted iX  
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2.2. Stepwise Regression Method 

The stepwise regression method generally consists of forward selection and backward elimination (Soejoeti, 
[25]). Here, we want to choose a small subset from the larger set (large set of candidate predictor variables) so 
that the resulting regression model is good predictive ability. In this method, we enter and remove predictors 
until there is no justifiable reason to enter or remove more. First step, we fit each of the one-predictor models, 
that is, regress y on x1, regress y on x2,…, regress y on xp. The first predictor is the predictor that has the smallest 
t-test (or high correlation (r) or significant in F test). Similarly, 2nd step,  we suppose x1 was the “best” one 
predictor, then we fit each of the two-predictor models with x1  in the model, that is, regress y on (x1, x2), regress 
y on (x1, x3),…, and y on (x1, xp). Again, the second predictor is the predictor that has the smallest t-test (or high 
correlation (r) or significant in F test).  But, we must consider to remove one of them if the model on the 2nd 

step, 0 1 1 2 2
ˆ ˆ ˆˆiy x x     , is not significant. For example, if the β1 = 0 has become not significant, remove 

x1 . The procedure is stopped when adding an additional predictor has no significant t-test more. Following, [20], 
the first step of the backward elimination procedure is to allow us to fit  the full model of the MLRM. We then 
eliminate one by one using correlation (r) criteria (and or t or F test) in testing hypothesis of the coefficient 
regression parameters. Here, we need many steps in getting the eligible coefficient regression parameters model 
of the MLRM. 

2.3. Best Subset Method 

The best subset method is used to find the eligible predictors (X) in the MLRM model,  with n > p. Here, we 
select the subset of predictors that do the best at meeting some objective criterion. Following Draper and Smith 
[21], we follow several steps to get the eligible predictor in the model, that are: 

(1) consider and choose the highest R2 : 2 1 ,
SSE

R
SST

   

 (2) determine the maximum R2
adj : 

2 ( 1)
1 ,

( )
adj

n SSE
R

n p SST


 


  

 (3) choose the small Cp  and  Cp is close to p , where  2 ,p

SSE
C n p

MSE
    and 

 (4) finally, we must choose the small s, where s is square root of MSE . 

III. A SIMULATION STUDY 

Following Subsections 2.1 to 2.3, we then simulate the model of response Y (percentage of poverty line) and 
four predictors X1 (jobless), X2  (population growth rate),  X3  (life expectancy), and X4 (length of study). The full 
model of the data simulation and their Pearson correlation (Table 2.) are then given as, respectively,   

0 1 1 2 2 3 3 4 4 1 2 3 4
ˆ ˆ ˆ ˆ ˆˆ 108 0.5 0.8 1.6 0.9 ,  andiy x x x x x x x x               

Table 2. Pearson correlation 

 X1 X2 X3 X4 

Y 0.8 0.5 -0.8 -0.5. 

From Table 2, it is clear that X1 and X3 have high correlation, so they are significant and eligible to the model. 
To make sure that model is really good, we then analysis it using both methods, namely forward and backward 
selection methods as follow. 

The output of the procedure of the stepwise forward selection and backward elimination are presented in Table 3. 
and Table 4. (Suleman, [14]). 
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Table 3. Stepwise Regression (2 steps): Y  versus X1, X2, X3, X4 with 0.05 
 

Step 1 2 

Constant 123.7 89.7 

X3 -1.7 -1.2 

T-Value -3.8 -5.2 

p-Value 0.005 0.001 

X1  0.37 

T-Value  5.2 

p-Value  0.001 

s 0.63 0.31 

R-sq 64.5 92.6 

R-sq (adj) 60.0 90.4 

Mallow-Cp 25.3 2.5 

Table 4. Stepwise Regression (3 steps): Y  versus X1, X2, X3, X4 with 0.05 
 

Step 1 2 3 

Constant 108.0 89.7 89.9 

X1 0.46 0.48 0.39 

T-Value 4.0 4.3 5.2 

p-Value 0.011 0.005 0.001 

X2 -0.8 -0.60  

T-Value -1.2 -1.1  

p-Value 0.27 0.31  

X3 -1.6 -1.2 -1.2 

T-Value -2.6 -5.3 -5.2 

p-Value 0.049 0.002 0.001 

X4 0.9   

T-Value 0.7   

p-Value 0.55   

s 0.32 0.30 0.31 

R-sq 94.3 93.8 92.6 

R-sq (adj) 89.8 90.8 90.4 

Mallow-Cp 5.0 3.4 2.5 

Table3. and Table 4. showed that the eligible model is similar, namely 

0 1 1 3 3 1 3
ˆ ˆ ˆˆ 90 0.4 1.2iy x x x x        . Here, we got two steps on the forward selection model but not 

in backward elimination model (3 steps). We then conclude that forward selection method is more efficient than 
backward elimination method.   

Moreover, we then analysis the data using the best subsets method using Minitab software, and the result is 
given in the Table 5. (Suleman, [14]). 
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Table 5. Best Subsets Procedure
 

Vars R-Sq R-Sq(adj) Mallows Cp S X1 X2 X3 X4 

1 64.5 60.0 25.3 0.633   x  

1 63.8 59.2 25.9 0.639 x    

2 92.6 90.4 2.5 0.310 x  x  

2 86.7 82.8 7.7 0.415 x   x 

3 93.8 90.8 3.4 0.304 x x x  

3 92.6 88.9 4.5 0.334 x  x x 

4 94.3 89.8 5.0 0.320 x x x x 

Here, we also presented the output of the best subset method in the case of poverty line (Y) and  X2  
(population growth rate), X3  (life expectancy), and X4  (length of study) on different data (see Table 5., Sopanti, 
[9]). 

Table 6. Output Best Subset Model 

Vars R-Sq R-Sq (adj) Mallows Cp S X2 X3 X4 

1 97,9 97,7 4,4 0,2882 x   

1 63,7 60,0 209,6 1,2072  x  

2 98,6 98,3 2,1 0,2460 x  x 

2 98,5 98,2 3,0 0,2594 x x  

3 98,7 98,2 4,0 0,2588 x x x 

From Table 6., we see that X2 and X3 are the best significant predictors to the model of the MLRM. This is 

due to the Cp close to p=3 (even it is not the smallest), and the 2 98.5R   (2nd highest), maximum 
2 98.2adjR  , Cp =3.0 close to p ( p = 3) and small s = 0.25943.  In this case, we note that the variables name 

are: X2 is population growth rate, X3  is life expectancy, and X4  is length of study. We then conclude that the best 

model is 0 2 2 3 3
ˆ ˆ ˆˆiy x x      .  

IV. CONCLUSION 

The paper studied the selection variables (predictors) in multiple regression model (MLRM) using best subset 
and stepwise regression methods. The result showed that the best model of the stepwise (forward and backward) 

method are similar (X1 and X3, are significant, and the model is 0 1 1 3 3
ˆ ˆ ˆˆ )iy x x     , but the forward 

selection (with 2 steps) is more efficient than backward elimination (with 3 steps). Unfortunately, the best subset 
method has a different selection variables, where X2 is also significant, so the model is 

0 1 1 2 2 3 3
ˆ ˆ ˆ ˆˆiy x x x       . Here, we note that the output of the 2 93.8R   (2nd highest), maximum 

2 90.8adjR  , Cp = 3.4 close to p (p=4) and s=0.30445, are the suitable indicators of the criteria.  We therefore 

(finally) conclude that the best model is, 0 1 1 3 3
ˆ ˆ ˆˆ .iy x x     This is due to  the X1 and X3 variables are 

available on the three tests, namely (1) correlation testing (partial test), (2) stepwise method, and (3) best subset 
method. 
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