
A survey of Cloud-based Radio-frequency
Identification Authentication Protocols and

Improvements to One of the Latest
Proposed Protocols

Hossein Samimi
Associate Professor, Institute of Communication and Information Technology

hossein-samimi@itrc.ac.ir

Tahereh Atbaei Tabari
MSc student of Kish International Campus, University of Tehran

t.atbaei@ut.ac.ir

Ali Moeini
Professor of algorithms and computation, University of Tehran

moeini@ut.ac.ir

Abstract - The development of IoT and cloud data storage has enabled several objects to access the internet
through radio-frequency identification (RFID) systems. Currently, the use of the cloud as a backend server
is considered as a viable and cost-effective option. The connection between reader and server, on one hand,
and the connection between tag and reader, on the other hand, need to be secure and private. The wired
connection between tag and reader is now a wireless cloud-based system and calls for stricter security
requirements. Not only the connection is insecure, but the cloud-provider which has full access to the tag
and reader’s confidential information is not necessarily trusted. In this paper, after analyzing previously
proposed authentication protocols in RFID systems, a protocol was chosen to be scrutinized in this research.
Owing to the features provided by the Scyther tool, the proposed protocol did not have the required privacy
and security properties. By reducing the computational overhead between tag and tag reader, and
increasing the protocol’s resistance to desynchronized and reply attacks, in the present study, we attempted
to further improve the protocol’s shortcomings in privacy and security.

Keywords: cloud computing; RFID; security protocol; authentication; Scyther tool

Introduction

Radio-frequency identification (RFID) system is one of the key technologies used in the Internet of things (IoT).
This technology has capabilities in automatic identification, localization, and access control of the objects [1].
Today, RFID is used in applications such as payment, access control, ticketing, and e-passport that require a strong
mechanism to maintain security and privacy [2]. An RFID system is comprised of tag, tag reader, and backend
server [3]. A tag reader emits radio-frequency waves to perform tag activation, and deliver and receive data
without any physical contact [4]. RFID authentication is the first step in ensuring security and privacy.
Identification of a tag without authentication can lead to serious problems [5]. In most cases, a communicating
channel between tag reader and server is assumed [1], which limits the mobility of the reader and makes the
database of back-end server a bottleneck, because RFID systems identify objects whose number is usually
increasing [5].

Today, with the development of cloud computing in RFID systems, presenting authentication protocols capable
of employing all the advantages of cloud services has received the attention of researchers [6]. Wireless
communication between the tag reader and the cloud server presupposes an insecure channel. Moreover, cloud
providers are also considered as unreliable individuals. Thus, an authentication protocol in cloud-based RFID
systems should be able to store tag information anonymously in the server database, while transferring data
securely between reader and cloud server. This entails a great deal of research into RFID systems, cloud servers,
and security protocols.

Literature and background

To date, many solutions have been proposed to address problems and prevent attacks happened due to insecure
channel and unreliable cloud service provider in cloud-based RFID systems. However, while paying attention to
how the system works, few studies have considered ensuring security and privacy. A summary of the most recent
works in this regard is presented in Table 1.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Hossein Samimi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2020/v12i2/201202121 Vol 12 No 2 Mar-Apr 2020 337

Table 1. a review of the protocols presented in the past

There follows a brief account of the studies presented in Table 1.

 Chi et al. (2013) came up with a cloud-based authentication protocol for RFID systems for the first time.
One of the main features of this protocol is the use of a VPN to establish a secure connection between
the reader and the cloud server. But this scheme, apart from high costs of VPN implementation, is
susceptible to tracking and reader impersonation attacks [4].

 Chen and colleagues (2014) proposed a protocol to reduce search time complexity in a database from O
(N) to O (logN) and be resistant to desynchronization and tracking attacks. Because of using tree data
mechanism in this scheme, the attacker can retrieve the information of all tags by acquiring the
information of a number of tags [6].

 Lin et al. (2015) offered a third-part authentication protocol that is useful for supply chains using cloud-
based RFID systems. However, the protocols are vulnerable to old key reuse and DoS attacks due to the
simple structure of a key generation algorithm [6].

 Abughazalah et al. (2015) identified weaknesses in Chi et al.’s protocol and came up with an updated
protocol. The assumption of the scheme is a secure communication channel between the tag reader and
could server that is unusable for mobile readers. Moreover, the tag’s data are explicitly stored in the cloud
[6].

 Dong et al. (2015) proposed a protocol based on location privacy cloud service. However, its
implementation called for some changes in the overall infrastructure that are not easy in practice [1].

 Xiao et al. (2017) suggested a protocol for insecure channels that can protect data during transmission
and ensure data security without a third party. But the protocol does not prevent the reader’s location
from leaking [1].

 Dong et al. (2018) offered a scheme that can prevent the leakage of the reader’s location by employing
the MIPv6 protocol. They posited that the protocol is resistant to tag tracking, replay, desynchronization,
and DoS attacks and mutual authentication is properly established between the tag reader and the tag.
Moreover, they verified their claim using the AVISPA tool.

The purpose of this research is to validate the security of an authentication protocol proposed for the above
cloud-based RFID systems; i.e., Authentication Protocol with Location Privacy (APWLP). In the following,
this protocol is analyzed, the encountered problems and damages are presented, and an attempt is made to
improve it using the security tool Scyther.

developers Year Method and idea Strengths Weaknesses

Xie W, Xie L,
Zhang C, Zhang Q,

Tang C [5]
2013

Application of virtual
proxy network (VPN)
and encryption of hash

tables

Attention to insecure
channel

Very costly and vulnerable to
tag readers and tracking

impersonation attacks [4]

Chen SM, Wu ME,
Sun HM, Wang KH

[7]
2014

Application of tree
data mechanism

Reducing search time
complexity to O(log

N)

Obtaining the data of all tags if
one knows the whole data of a

limited number of them [6]

Lin IC, Hsu HH,
Cheng CY [8]

2015
Encryption by hash

functions and
exclusive OR (XOR)

Developed the
scheme to be applied

to supply chain

Vulnerable to attacks for
reusing old keys and denial of

service [6]

Abughazalah S,
Markantonakis K,

Mayes K [4]
2015

Use of symmetrical
encryption and hash

functions

Addressed Xie et al.,
2013 protocol

problems

Lack of considering insecure
channel

Dong Q, Tong J,
Chen Y [10]

2015
Use of location and

private cloud service

Prevented the
location of tag reader

from being leaked

A need for making vast changes
in infrastructures [1]

Xiao H, Alshehri
AA, Christianson B

[6]
2017

Use of symmetric
encryption and hash

functions and
encryption of hash

tables

Addressed
Abughazalah et al.,

2014 protocol
problems

Leakage of the reader’s location
[1]

Dong Q, Chen M,
Li L, Fan K [1]

2018 Use of MIPv6 protocol
Prevented tag

reader’s location
from being disclosed

Vulnerable to old key and
desynchronization attacks

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Hossein Samimi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2020/v12i2/201202121 Vol 12 No 2 Mar-Apr 2020 338

Authentication in APWLP protocol

The notations used in this article are interpreted in Table 2.

Table 2. notations used in APWLP authentication protocol

notations Description

T Tag
R Mobile reader

Cloud Cloud server
idT Identity of the tag
idR Identity of the reader
key A secret key of the tag
kRC A key shared by the reader and the cloud server

k Symmetric encryption and decryption key for encrypting the data stored in the cloud
ri A random number

MAC Message authentication code
h() Hash function
E() Symmetric encryption algorithm
|| The concatenation of two strings

Initialization phase

1. The tags store their own identity (idT) and secret value key
2. The cloud server stores

 (h(idR), kRC)

 {h(key ‖ idT ‖ h(idR)), Ek(key ‖ idT)}

 {h(keyold ‖ idT ‖ h(idR)), Ek(keyold ‖ idT)}, and sets h(key‖idT‖h(idR)) = h(keyold‖idT‖h(idR)) and Ek(key‖idT) =
Ek(keyold‖idT).

3. The reader stores its identity idR, key, and pre-computes h(idR) and shares authentication key kRC with the
cloud server.

Authentication phase

The protocol is comprised of three factors. In the authentication phase, the cloud server is only responsible for
storing and searching the RFID data, and the authentication is between tag and reader.

Fig. 1. APWLP authentication protocol

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Hossein Samimi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2020/v12i2/201202121 Vol 12 No 2 Mar-Apr 2020 339

As shown in Fig. 4, the cloud-based RFID mutual authentication protocol is as follows;

Step 1: R T: h(idR) || r1

The mobile reader generates a random number r1 and sends h(idR)‖r1 to the tag.

Step 2: T R: r2 || h(key || idT || h(idR)) || h(r1 || key || idT)

After receiving h(idR)‖r1, the tag generates a random number r2, uses the hash to compute X = h(key‖idT‖h(idR)),
M1 = h(r1‖key‖idT), and sends r2‖X‖M1 to the reader as a response.

Step 3: R C: r1 || h(idR) || X || MACkRC{r1 || h(idR) || X}

The reader stores the messages M1 = h(r1‖key‖idT) and r2 sent by the tag. Next, it sends
r1‖h(idR)‖X‖MACkRC{r1‖h(idR)‖X} to the cloud server. MACkRC{r1‖h(idR)‖X} denotes the MAC.

Step 4: C R: r1 || r3 || Ek(key || idT) || MACKRC{r1 || r3 || Ek(key || idT)}

The cloud server searches h(idR); if finds it, the cloud server can find the corresponding kRC, then uses kRC to
verify MACkRC{r1‖h(idR)‖X} to determine whether the information from the reader is tampered or not. If the
verification passes, the cloud server searches X in its own records. The searching results can be one of the
following cases:

 There is no matching hash value, the authentication is failed, and then the protocol stops.
 If the cloud server finds h(key‖idT‖h(idR)) that is equal to X, it indicates that both the cloud server and the

tag made the update normally in the last authentication. The cloud server generates a random number r3
and sends to r1‖r3‖Ek(key‖idT)‖MACkRC{r1‖r3‖Ek(key‖idT)} to the reader.

 If the cloud server finds h(keyold‖idT‖h(idR)), which is equal to X, it indicates that the cloud server
performed the update normally, while the tag did not renew its key in the last authentication. The cloud
server generates a random number r3 and sends r1‖r3‖Ek(keyold‖idT)‖MACkRC{r1‖r3‖Ek(keyold‖idT)} to the
reader.

Step 5: R C: r3 || h(keynew || idT || h(idR)) || Ek(keynew || idT) || MACkRC{r3 || h(keynew || idT || h(idR)) || Ek(keynew ||
idT)}

The reader uses k to decrypt Ek(key‖idT) to get key and idT. Then, it checks whether h(r1‖key‖idT) is equal to M1.
If it succeeds, the tag is authenticated by the reader. The reader computes keynew = h(r1‖r2‖key, h(keynew‖idT‖h(idR),
Ek(keynew‖idT). Then, it sends
r3‖h(keynew‖idT‖h(idR))‖Ek(keynew‖idT)‖MACkRC{r3‖h(keynew‖idT‖h(idR))‖Ek(keynew‖idT)} to the cloud server to
remind the cloud server to carry out the update.

Step 6: C R: r3 || ACK || MACkRC{r3 || ACK}

The cloud server checks MACkRC{r3‖h(keynew‖idT‖h(idR)‖Ek(keynew‖idT)} and updates the corresponding records,
sets:

 h(keyold || idT || h(idR)) = h(key || idT || h(idR))

 Ek(keyold || idT) = Ek(key || idT)

 h(key || idT || h(idR)) = h(keynew || idT || h(idR))

 Ek(key || idT) = Ek(keynew || idT)

Next, it sends r3‖ACK‖MACkRC{r3‖ACK} to the reader.

Step 7: R T: M2

When the reader receives r3‖ACK‖MACkRC{r3‖ACK}, it computes M2 = h(r2‖keynew) and sends M2 to the tag.

Step 8: The tag computes keynew = h(r1‖r2‖key) and verifies whether h(r2‖keynew) is equal to M2 or not; if it succeeds,
the reader is authenticated by the tag. Then, the tag updates key = keynew.

Security analysis of APWLP protocol

In this section, we analyze the security features in the APWLP protocol.

Mutual authentication

With the analysis of APWLP protocol in the third phase (Ek(key || idT), we realize that the major part of a security
protocol is dependent on the reader’s key because authentication messages M1 and M2 will lose their credits in
case the key is leaked. As the reader’s key is constant, its security decreases in all sessions.

Reader tracking

As mentioned in the analysis of APWLP protocol, the identity of the reader is sent in plaintext h(idR) and it will
be a constant in all subsequent sessions. Therefore, it can be concluded that the protocol does not provide forward
security and the reader may be subjected to a tracking attack.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Hossein Samimi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2020/v12i2/201202121 Vol 12 No 2 Mar-Apr 2020 340

Desynchronization attack

Similarly, the values not corresponding to the tag are stored in the cloud database in this protocol. To prevent a
desynchronization attack, both the new and old values of the tag key are kept, while the mechanism just makes
one future session resistant to desynchronization attack and there remains the risk of vulnerability in other
sessions. The value of the tag is updated before sending the new key to the tag, which raises the possibility of the
desynchronization between the tag and cloud.

Replay attack

If the attacker attains the reader’s symmetric key, the possibility of the attack by the old key remains because it
sends the message X = h(key‖idT‖h(idR)) of the tag’s key without any random number or timestamp.

Research method

In this section, we introduce Scyther by which we analyzed the APWLP protocol and the optimized protocol in
the following sections.

One of the means of analyzing security protocols is to find the violations of security claims made at the time of a
protocol description. This method has been applied by some tools including Scyther. It deals with violations of
security claims by searching for attack patterns in different cases of the protocol (i.e., Trace patterns). A protocol
can be attacked in different ways by an attacker, which is referred to as trace in the logic of Scyther. There is
another concept known as Trace pattern in the logic of Scyther; it is a symbolic and disciplined demonstration of
a set of traces that consist of existing definitions and events in a protocol.

According to the described rules, Scyther attempts to find threat patterns against security claims in a protocol
definition by making search and deduction about a trace pattern. A trace pattern occurs only if Scyther can reach
it from an initial state of the protocol’s symbolic definition. Search in trace patterns can give rise to new trace
patterns distinct from preceding states, or may end up with duplicate trace patterns. A security claim is made when
there is no violation in any of the trace patterns. During this process, the execution of this algorithm may
sometimes cease to stop. Hence, in such cases, Scyther envisages some limitations on the number of executions.
In this way, if a security claim is violated, the algorithm can go ahead to find a more optimized violation or
terminate at that point and denote the violation [11].

Security requirements define the goal of a security protocol. The main idea of claims is their locality. According
to this concept, based on the messages they receive, agents have a local view on the state of a system. A protocol
should guarantee whether an agent can be assured of some characteristics of the general situation of the system
according to this local view. For instance, certain conditions cannot be detected by an attacker or a special agent
is active. In the following, we describe some claims of authentication and security.

Secrecy: This claim states that certain information will not be leaked to an attacker even if it is exchanged on an
insecure network. Secrecy is a protocol that holds only when for network components we have; in each run. Roles
are mapped only to reliable agents. Also, there are certain conditions for secrecy that should not be understood by
the attacker. The claim of secrecy can assign roles for any condition including variables.

Authentication: There are many cases of authentication. In the basic case, authentication is a simple statement
about the existence of a communication entity. In describing a protocol, it is stated that at least two agents are
communicating; however, we cannot guarantee that there is certainly one communication entity in each run when
the network is controlled by the attacker. For example, the initiator cannot be sure who sent the message “hello”
it received. This message might have been sent by an attacker or any other agent. The minimum requirement for
authentication is that when agent A performs a role it can make sure that there is at least one communication entity
in the network. In most cases, stronger authentication is required; for example, when a communication entity is
aware of the matter that it is communicating with A and knows that the communication entity performs a given
role. In addition, maybe we need to make sure that the message was sent according to the description of the
protocol. In the following, we describe some cases of authentication;

 Aliveness: This claim lays down that the communication entity performed some events, which means
that the entity is alive, so to speak. In Scyther, four cases of aliveness are described: “weak aliveness”,
“weak aliveness in the correct role”, “recent aliveness”, and “recent aliveness in the correct role”. The
description of weak aliveness determines that if an agent performs a claim event and the communication
entity in question is reliable, so this entity performs an event. In most cases, knowing that a
communication entity is in the state of weak aliveness per se is not enough, as at least we need to know
it is performing a role as expected with respect to the description of the protocol. “Weak aliveness in the
correct role” describes that the communication entity is alive but it does not reveal whether a claim event
happened before, after or during execution. “Recent aliveness” shows that a communication entity
performs an event when performing a role in which the claim event occurs.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Hossein Samimi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2020/v12i2/201202121 Vol 12 No 2 Mar-Apr 2020 341

 Synchronization: aliveness requires exciting certain events by a communication entity without putting
restrictions on the content of exchanged messages. One of the requirements of stronger authentication is
fulfilled through synchronization. In this case, all messages received should have been sent by a
communication entity. Indeed, the messages need to be received by a communication entity. In this case,
the exchange of a real message should have occurred in accordance with the description of a protocol.

 Non-injective synchronization: This characteristic states that any event that we want to occur in the
description of a protocol occurs in each component of the protocol. It is important to know that
synchronization does not simply consider the content and order of messages. If an attacker sends
messages without making any change in a receiver, this is not held to be a synchronization attack.

 Injective synchronization: Non-injective synchronization ensures that the protocol will be precisely
executed and this happens when there is no attacker. Although agents may have a couple of executions
probably concerning similar agents, the attacker can imply an unexpected behavior by changing the
messages of a session versus another session. Particularly, protocols may be still susceptible to replay
attacks in the event of non-injective synchronization. In a replay attack, the attacker responds to the
message received so that reliable agents are fooled. In this way, they think that the protocol run was
successfully completed. If there is no attacker whatsoever, the behavior ceases to exist. For a protocol
with two agents (i.e., initiators with claim event and respondent), there must be an injective scheme of
initiator’s runs together with a claim event for corresponding respondent’s run. In other words, the
initiator’s two different versions of claim should correspond to the respondent’s different runs.

 Agreement: Synchronization ensures that the protocol is run as described for it even in the presence of
an attacker. Another group of authentication characteristics focuses on the agreement on the data
exchanged between agents. The idea behind these agreements maintains that after a protocol runs, parties
agree on the values of variables. According to the description of the protocol, an agreement is defined by
requesting that the contents of the received messages are related to the message sent. As a result, after
running a protocol, the values of variables exactly match the protocol description.

The description of an agreement is much like that of synchronization, except that the latter entails the
order of the relation; i.e., sending an event should precede the receiving event.

The agreement states that there are runs for other roles of the protocol for all claim events presented in
every single part of a security protocol so that all communication events preceding the claim event should
have occurred before a claim. The injective agreement is defined in the same way as injective
synchronization, which is obtained from a non-injective synchronization [12].

Comparison with other tools

Scyther tool was compared with the three tools: Avispa (with four backup tools CL-Atse, OFMC, Sat-MC, and
TA4SP), ProVerif, and Casper/FDR. The results are based on the key-sharing protocols Needham-Schroeder,
EKE, and TLS. In the following, a brief account of the comparison is presented.

Comparing the protocol analysis tools’ performance showed that Proverif is the fastest tool for analyzing the
protocols. With a slight difference, Scyther stands in second place. However, it has the advantage of not using
approximations. CL-Atse and OMFC were so close with concrete sessions, and are the most efficient of the Avispa
tools. The Sat-MC is placed in the next rank. Casper/FDR has an exponential behavior and is slower than OMFC
and CL-Atse but faster than Sat-MC for a small number of runs.

For a higher number of runs of simple protocols, it seems that Sat-MC can outperform the other two tools. In some
cases, TA4SP can complement other Avispa tools, but it generally is significantly slower than tools that can handle
unbounded verification (Scyther and proverif) and has the drawback of not being able to show attack traces
(Cremers et al., 2009).

In Fig. 2., we show the results of executing this protocol by using the Scyther tool.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Hossein Samimi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2020/v12i2/201202121 Vol 12 No 2 Mar-Apr 2020 342

Fig. 2. Attacks to APWLP protocol by using Scyther tool

As shown in Fig. 2, the characteristics of authentication are not provided for the tag, so the authenticity of the
reader is not verified for it. In addition, given that Scyther hampers the checking of the states of illogical leakage
of a long-term key, the attacker, after all, gets access to the reader’s and cloud’s shared long-term key after three
consecutive sessions. The graph of its attack is shown in Figs. 3, 4, and 5. It is noteworthy that the leakage violates
Niagree, Aliveness, and Nisynch’s claims in the cloud.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Hossein Samimi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2020/v12i2/201202121 Vol 12 No 2 Mar-Apr 2020 343

Fig. 3. Violation of aliveness claim in APWLP protocol

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Hossein Samimi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2020/v12i2/201202121 Vol 12 No 2 Mar-Apr 2020 344

Fig. 4. Violation of agreement claim in the APWLP protocol

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Hossein Samimi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2020/v12i2/201202121 Vol 12 No 2 Mar-Apr 2020 345

Fig. 5. Violation of synchronization claim in the APWLP protocol

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Hossein Samimi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2020/v12i2/201202121 Vol 12 No 2 Mar-Apr 2020 346

Optimized protocol

In this section, an attempt was made to reduce the computational overhead for the tag using the rotation function
instead of the hash function. This can be observed in reducing the time of protocol run by means of a Scyther tool.
Moreover, when the reader’s key is leaked, the attacker cannot get access to the identity of the tag. In this protocol,
to establish the feature of message freshness and data indexes stored in the cloud, we used timestamp instead of a
random number. Table 3 presents the notations used in the optimized protocol.

Table 3. Notations used in the optimized protocol

Notations description

T Tag
R Mobile reader
C Cloud server

idT Identity of the tag
idR Identity of the reader
key The secret key of a tag
kRC The shared key between reader and cloud server

k The symmetric key for encrypting and decrypting data stored in the cloud
Tr Timestamp generated by the reader
Tt Timestamps stored in the tag

Rot(A,B) Rotation to the left A by the length of B bites

⨁ Exclusive Or
|| The concatenation of two strings

Initialization phase

The tag stores Ek(idT) and Tt.

The reader calculates and stores Rot(Ek(idR),(Ek(idR) ⨁ idR) and KRC.

The cloud database stores data as shown in Tables 4 and 5.

Table 4. The way shared key is stored between reader and cloud in the cloud

Data Index

kRC Rot(Ek(idR),(Ek(idR) ⨁ idR))

⫶ ⫶

Table 5. How the identity of the tag is stored in the cloud

Data Index

Ek(idT) T

⫶ ⫶

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Hossein Samimi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2020/v12i2/201202121 Vol 12 No 2 Mar-Apr 2020 347

Authentication phase

Fig. 6. Optimized authentication protocol

The optimized protocol shown in Fig. 6 is as follows;

Step 1: R T: Tr

The reader generates a timestamp, i.e., Tr, and sends it to the tag.

Step 2: T R: Tr || Tt || Rot(Ek(idT), Ek(idT) ⨁ Tr)

Having received Tr, the tag computes the message Rot(Ek(idT) ⨁ Tr and sends it as a response to the reader along
with the timestamp of the preceding session Tt.

Step 3: R C: Tr || Tt || Rot(Ek(idT), (Ek(idT) ⨁ Tr)) || Rot(Ek(idR), (Ek(idR) ⨁ idR))

The reader sends the message M1 = Rot(Ek(idT), (Ek(idT) ⨁ Tr)) sent from the tag to find the identity of the tag
and the message M2 = Rot(Ek(idR), (Ek(idR) ⨁ idR)) to present itself to the cloud and use their shared key to the
cloud server.

Step 4: C R: EkRC(Ek(idT) || Tr || Tt)

Cloud server searches M2. If finds it, the cloud server can find corresponding KRC and is certain that no other
agent is able to compute it. If the verification operation succeeds, the cloud server searches Tt in its records. The
result of the search can be either of the two cases:

 There is no compatible timestamp, the authentication fails, and the protocol run is terminated.
 If the cloud server finds Tt, the cloud server and tag both successfully make the update in the last

authentication and send EkRC(Ek(idT)‖Tr‖Tt) to the reader.

Step 5: R T: {Rot(Ek(idT), (Ek(idT) ⨁ Tt))}Left

The reader uses KRC to decrypt EkRC(Ek(idT)‖Tr‖Tt). Once Tr is seen, it makes sure whether it is fresh, and the
identity of the cloud is authenticated for the reader because the cloud is aware of the shared key. Next, using K, it
gets idT, and its authenticity is confirmed for the reader after computing Rot(Ek(idT), (Ek(idT) ⨁ Tr)) and
comparing it with the message of M1 received from the tag. The reader send the left part of M3 = Rot(Ek(idT),
(Ek(idT) ⨁ Tt)) to the tag.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Hossein Samimi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2020/v12i2/201202121 Vol 12 No 2 Mar-Apr 2020 348

Step 6: T R: {Rot(Ek(idT), (Ek(idT) ⨁ Tt))}Right

Having received the left part of M3, the tag computes it. If it is equal to the message received from the reader, the
authenticity of the reader will be confirmed for the tag, because it is only the reader that is allowed to retrieve the
identity of the tag from the cloud server. Next, to confirm Tr, it sends the right part of M3 to the reader and
replaces Tr with its own Tt.

Step 7: R C: EkRC(Ek(idT), Tr)

Once the right part of M3 is received, the reader will be aware of the tag’s update and computes EkRC(Ek(idT), Tr
and sends it to the server so that it matches the tag by updating Tt.

Step 8: C T: EkRC(ACK, Tr)

Once the message EkRC(Ek(idT), Tr) is received, the cloud server replaces the corresponding Tt with Tr. Then, it
sends the verification message Ek(idT) to the reader.

Using the Scyther tool, we analyzed the security of the proposed protocol. As shown in Fig. 7, none of the security
claims were violated and no attack happened to it.

Fig. 7. Result of the analysis of the proposed protocol by means of Scyther tool

Conclusion

In this paper, we analyzed the evolution of authentication protocols in could-based RFID systems. Then, we
thoroughly analyzed one of the protocols recently introduced in this context (i.e., APWLP). Using the Scyther
tool, we demonstrated that the protocol does not have the essential security characteristics. We attempted to reduce
the tag’s and reader’s computation overhead in an RFID system by employing lighter functions, making it resistant
to desynchronization attacks and replay. We demonstrated it also by means of the Scyther tool. One of the reasons
for choosing the APWLP protocol is, in addition to being up to date, the use of the Avispa security validation tool
by its developers. In the present study, we demonstrate that this tool can detect all attacks by drawing on the
material presented and validating our own protocol.

There are plenty of powerful tools in this context. For future studies, we will try to expose the weaknesses and
strengths of other tools by investigating them in detail. In this way, we can obtain a tool with the minimum
weaknesses to validate security protocols.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Hossein Samimi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2020/v12i2/201202121 Vol 12 No 2 Mar-Apr 2020 349

References
[1] Dong, Q., Chen, M., Li, L., & Fan, K. (2018). Cloud-based Radio-frequency identification authentication protocol with location privacy

protection. International Journal of Distributed Sensor Networks, 14(1), 1550147718754969.
[2] Kardas, S., Çelik, S., Bingöl, M. A., & Levi, A. (2013, December). A new security and privacy framework for RFID in cloud computing.

In 2013 IEEE 5th International Conference on Cloud Computing Technology and Science (Vol. 1, pp. 171-176). IEEE.
[3] Fan, K., Luo, Q., Li, H., & Yang, Y. (2017, June). Cloud-based lightweight RFID mutual authentication protocol. In 2017 IEEE Second

International Conference on Data Science in Cyberspace (DSC) (pp. 333-338). IEEE.
[4] Abughazalah, S., Markantonakis, K., & Mayes, K. (2014). Secure improved cloud-based RFID authentication protocol. In Data Privacy

Management, Autonomous Spontaneous Security, and Security Assurance (pp. 147-164). Springer, Cham.
[5] Xie, W., Xie, L., Zhang, C., Zhang, Q., & Tang, C. (2013, April). Cloud-based RFID authentication. In 2013 IEEE International

Conference on RFID (RFID) (pp. 168-175). IEEE.
[6] Xiao, H., Alshehri, A. A., & Christianson, B. (2016, August). A cloud-based RFID authentication protocol with insecure communication

channels. In 2016 IEEE Trustcom/BigDataSE/ISPA (pp. 332-339). IEEE.
[7] Chen, S. M., Wu, M. E., Sun, H. M., & Wang, K. H. (2014). CRFID: An RFID system with a cloud database as a back-end server. Future

Generation Computer Systems, 30, 155-161.
[8] Lin, I. C., Hsu, H. H., & Cheng, C. Y. (2015). A cloud-based authentication protocol for RFID supply chain systems. Journal of Network

and Systems Management, 23(4), 978-997.
[9] Rong, C., Zhao, G., Yan, L., Cayirci, E., & Cheng, H. (2013). RFID security. In Computer and Information Security Handbook (pp. 345-

361). Morgan Kaufmann.
[10] Dong, Q., Tong, J., & Chen, Y. (2015). Cloud-based RFID mutual authentication protocol without leaking location privacy to the

cloud. International Journal of Distributed Sensor Networks, 11(10), 937198.
[11] Cremers, C. J. (2008, July). The Scyther Tool: Verification, falsification, and analysis of security protocols. In International Conference

on Computer Aided Verification (pp. 414-418). Springer, Berlin, Heidelberg.
[12] Cremers, C. J. F. (2006). Scyther: Semantics and verification of security protocols. Eindhoven, Netherlands: Eindhoven University of

Technology.
[13] Cremers, C. J., Lafourcade, P., & Nadeau, P. (2009). Comparing state spaces in automatic security protocol analysis. In Formal to

Practical Security (pp. 70-94). Springer, Berlin, Heidelberg.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Hossein Samimi et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2020/v12i2/201202121 Vol 12 No 2 Mar-Apr 2020 350

	A survey of Cloud-based Radio-frequencyIdentification Authentication Protocols andImprovements to One of the LatestProposed Protocols
	Abstract
	Keywords
	Introduction
	Literature and background
	Optimized protocol
	Conclusion
	References

