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Abstract - The development of IoT and cloud data storage has enabled several objects to access the internet 
through radio-frequency identification (RFID) systems. Currently, the use of the cloud as a backend server 
is considered as a viable and cost-effective option. The connection between reader and server, on one hand, 
and the connection between tag and reader, on the other hand, need to be secure and private. The wired 
connection between tag and reader is now a wireless cloud-based system and calls for stricter security 
requirements. Not only the connection is insecure, but the cloud-provider which has full access to the tag 
and reader’s confidential information is not necessarily trusted. In this paper, after analyzing previously 
proposed authentication protocols in RFID systems, a protocol was chosen to be scrutinized in this research. 
Owing to the features provided by the Scyther tool, the proposed protocol did not have the required privacy 
and security properties. By reducing the computational overhead between tag and tag reader, and 
increasing the protocol’s resistance to desynchronized and reply attacks, in the present study, we attempted 
to further improve the protocol’s shortcomings in privacy and security. 
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Introduction 

Radio-frequency identification (RFID) system is one of the key technologies used in the Internet of things (IoT). 
This technology has capabilities in automatic identification, localization, and access control of the objects [1]. 
Today, RFID is used in applications such as payment, access control, ticketing, and e-passport that require a strong 
mechanism to maintain security and privacy [2]. An RFID system is comprised of tag, tag reader, and backend 
server [3]. A tag reader emits radio-frequency waves to perform tag activation, and deliver and receive data 
without any physical contact [4]. RFID authentication is the first step in ensuring security and privacy. 
Identification of a tag without authentication can lead to serious problems [5]. In most cases, a communicating 
channel between tag reader and server is assumed [1], which limits the mobility of the reader and makes the 
database of back-end server a bottleneck, because RFID systems identify objects whose number is usually 
increasing [5].  

Today, with the development of cloud computing in RFID systems, presenting authentication protocols capable 
of employing all the advantages of cloud services has received the attention of researchers [6]. Wireless 
communication between the tag reader and the cloud server presupposes an insecure channel. Moreover, cloud 
providers are also considered as unreliable individuals. Thus, an authentication protocol in cloud-based RFID 
systems should be able to store tag information anonymously in the server database, while transferring data 
securely between reader and cloud server. This entails a great deal of research into RFID systems, cloud servers, 
and security protocols.  

Literature and background 

To date, many solutions have been proposed to address problems and prevent attacks happened due to insecure 
channel and unreliable cloud service provider in cloud-based RFID systems. However, while paying attention to 
how the system works, few studies have considered ensuring security and privacy. A summary of the most recent 
works in this regard is presented in Table 1.  
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Table 1. a review of the protocols presented in the past 

There follows a brief account of the studies presented in Table 1.  

 Chi et al. (2013) came up with a cloud-based authentication protocol for RFID systems for the first time. 
One of the main features of this protocol is the use of a VPN to establish a secure connection between 
the reader and the cloud server. But this scheme, apart from high costs of VPN implementation, is 
susceptible to tracking and reader impersonation attacks [4].  

 Chen and colleagues (2014) proposed a protocol to reduce search time complexity in a database from O 
(N) to O (logN) and be resistant to desynchronization and tracking attacks. Because of using tree data 
mechanism in this scheme, the attacker can retrieve the information of all tags by acquiring the 
information of a number of tags [6].  

 Lin et al. (2015) offered a third-part authentication protocol that is useful for supply chains using cloud-
based RFID systems. However, the protocols are vulnerable to old key reuse and DoS attacks due to the 
simple structure of a key generation algorithm [6].  

 Abughazalah et al. (2015) identified weaknesses in Chi et al.’s protocol and came up with an updated 
protocol. The assumption of the scheme is a secure communication channel between the tag reader and 
could server that is unusable for mobile readers. Moreover, the tag’s data are explicitly stored in the cloud 
[6].  

 Dong et al. (2015) proposed a protocol based on location privacy cloud service. However, its 
implementation called for some changes in the overall infrastructure that are not easy in practice [1].  

 Xiao et al. (2017) suggested a protocol for insecure channels that can protect data during transmission 
and ensure data security without a third party. But the protocol does not prevent the reader’s location 
from leaking [1].  

 Dong et al. (2018) offered a scheme that can prevent the leakage of the reader’s location by employing 
the MIPv6 protocol. They posited that the protocol is resistant to tag tracking, replay, desynchronization, 
and DoS attacks and mutual authentication is properly established between the tag reader and the tag. 
Moreover, they verified their claim using the AVISPA tool.  

The purpose of this research is to validate the security of an authentication protocol proposed for the above 
cloud-based RFID systems; i.e., Authentication Protocol with Location Privacy (APWLP). In the following, 
this protocol is analyzed, the encountered problems and damages are presented, and an attempt is made to 
improve it using the security tool Scyther. 

 

developers Year Method and idea Strengths Weaknesses 

Xie W, Xie L, 
Zhang C, Zhang Q, 

Tang C [5] 
2013 

Application of virtual 
proxy network (VPN) 
and encryption of hash 

tables 

Attention to insecure 
channel 

Very costly and vulnerable to 
tag readers and tracking 

impersonation attacks [4] 

Chen SM, Wu ME, 
Sun HM, Wang KH 

[7] 
2014 

Application of tree 
data mechanism 

Reducing search time 
complexity to O(log 

N) 

Obtaining the data of all tags if 
one knows the whole data of a 

limited number of them [6] 

Lin IC, Hsu HH, 
Cheng CY [8] 

2015 
Encryption by hash 

functions and 
exclusive OR (XOR) 

Developed the 
scheme to be applied 

to supply chain 

Vulnerable to attacks for 
reusing old keys and denial of 

service [6] 

Abughazalah S, 
Markantonakis K, 

Mayes K [4] 
2015 

Use of symmetrical 
encryption and hash 

functions 

Addressed Xie et al., 
2013 protocol 

problems  

Lack of considering insecure 
channel 

Dong Q, Tong J, 
Chen Y [10] 

2015 
Use of location and 

private cloud service 

Prevented the 
location of tag reader 

from being leaked 

A need for making vast changes 
in infrastructures [1] 

Xiao H, Alshehri 
AA, Christianson B 

[6] 
2017 

Use of symmetric 
encryption and hash 

functions and 
encryption of hash 

tables 

Addressed 
Abughazalah et al., 

2014 protocol 
problems  

Leakage of the reader’s location 
[1] 

Dong Q, Chen M, 
Li L, Fan K [1] 

2018 Use of MIPv6 protocol 
Prevented tag 

reader’s location 
from being disclosed 

Vulnerable to old key and 
desynchronization attacks 
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Authentication in APWLP protocol  

The notations used in this article are interpreted in Table 2.  

Table 2. notations used in APWLP authentication protocol 

notations Description 

T Tag 
R Mobile reader 

Cloud Cloud server 
idT Identity of the tag 
idR Identity of the reader 
key A secret key of the tag 
kRC A key shared by the reader and the cloud server 

k Symmetric encryption and decryption key for encrypting the data stored in the cloud 
ri A random number 

MAC Message authentication code 
h() Hash function 
E() Symmetric encryption algorithm 
|| The concatenation of two strings 

Initialization phase 

1. The tags store their own identity (idT) and secret value key  
2. The cloud server stores  

 (h(idR), kRC) 

 {h(key ‖ idT ‖ h(idR)), Ek(key ‖ idT)}  

 {h(keyold ‖ idT ‖ h(idR)), Ek(keyold ‖ idT)}, and sets h(key‖idT‖h(idR)) = h(keyold‖idT‖h(idR)) and Ek(key‖idT) = 
Ek(keyold‖idT).  

3. The reader stores its identity idR, key, and pre-computes h(idR) and shares authentication key kRC with the 
cloud server.  

Authentication phase 

The protocol is comprised of three factors. In the authentication phase, the cloud server is only responsible for 
storing and searching the RFID data, and the authentication is between tag and reader.  

 
Fig. 1. APWLP authentication protocol 
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As shown in Fig. 4, the cloud-based RFID mutual authentication protocol is as follows;  

Step 1: R  T: h(idR) || r1 

The mobile reader generates a random number r1 and sends h(idR)‖r1 to the tag.  

Step 2: T  R: r2 || h(key || idT || h(idR)) || h(r1 || key || idT) 

After receiving h(idR)‖r1, the tag generates a random number r2, uses the hash to compute X = h(key‖idT‖h(idR)), 
M1 = h(r1‖key‖idT), and sends r2‖X‖M1 to the reader as a response.  

Step 3: R  C: r1 || h(idR) || X || MACkRC{r1 || h(idR) || X} 

The reader stores the messages M1 = h(r1‖key‖idT) and r2 sent by the tag. Next, it sends 
r1‖h(idR)‖X‖MACkRC{r1‖h(idR)‖X} to the cloud server. MACkRC{r1‖h(idR)‖X} denotes the MAC.  

Step 4: C  R: r1 || r3 || Ek(key || idT) || MACKRC{r1 || r3 || Ek(key || idT)} 

The cloud server searches h(idR); if finds it, the cloud server can find the corresponding kRC, then uses kRC to 
verify MACkRC{r1‖h(idR)‖X} to determine whether the information from the reader is tampered or not. If the 
verification passes, the cloud server searches X in its own records. The searching results can be one of the 
following cases:  

 There is no matching hash value, the authentication is failed, and then the protocol stops. 
 If the cloud server finds h(key‖idT‖h(idR)) that is equal to X, it indicates that both the cloud server and the 

tag made the update normally in the last authentication. The cloud server generates a random number r3 
and sends to r1‖r3‖Ek(key‖idT)‖MACkRC{r1‖r3‖Ek(key‖idT)} to the reader. 

 If the cloud server finds h(keyold‖idT‖h(idR)), which is equal to X, it indicates that the cloud server 
performed the update normally, while the tag did not renew its key in the last authentication. The cloud 
server generates a random number r3 and sends r1‖r3‖Ek(keyold‖idT)‖MACkRC{r1‖r3‖Ek(keyold‖idT)} to the 
reader. 

Step 5: R  C: r3 || h(keynew || idT || h(idR)) || Ek(keynew || idT) || MACkRC{r3 || h(keynew || idT || h(idR)) || Ek(keynew || 
idT)} 

The reader uses k to decrypt Ek(key‖idT) to get key and idT. Then, it checks whether h(r1‖key‖idT) is equal to M1. 
If it succeeds, the tag is authenticated by the reader. The reader computes keynew = h(r1‖r2‖key, h(keynew‖idT‖h(idR), 
Ek(keynew‖idT). Then, it sends 
r3‖h(keynew‖idT‖h(idR))‖Ek(keynew‖idT)‖MACkRC{r3‖h(keynew‖idT‖h(idR))‖Ek(keynew‖idT)} to the cloud server to 
remind the cloud server to carry out the update. 

Step 6: C  R: r3 || ACK || MACkRC{r3 || ACK} 

The cloud server checks MACkRC{r3‖h(keynew‖idT‖h(idR)‖Ek(keynew‖idT)} and updates the corresponding records, 
sets: 

 h(keyold || idT || h(idR)) = h(key || idT || h(idR)) 

 Ek(keyold || idT) = Ek(key || idT) 

 h(key || idT || h(idR)) = h(keynew || idT || h(idR)) 

 Ek(key || idT) = Ek(keynew || idT) 

Next, it sends r3‖ACK‖MACkRC{r3‖ACK} to the reader. 

Step 7: R  T: M2 

When the reader receives r3‖ACK‖MACkRC{r3‖ACK}, it computes M2 = h(r2‖keynew) and sends M2 to the tag. 

Step 8: The tag computes keynew = h(r1‖r2‖key) and verifies whether h(r2‖keynew) is equal to M2 or not; if it succeeds, 
the reader is authenticated by the tag. Then, the tag updates key = keynew. 

Security analysis of APWLP protocol  

In this section, we analyze the security features in the APWLP protocol.  

Mutual authentication  

With the analysis of APWLP protocol in the third phase (Ek(key || idT), we realize that the major part of a security 
protocol is dependent on the reader’s key because authentication messages M1 and M2 will lose their credits in 
case the key is leaked. As the reader’s key is constant, its security decreases in all sessions.  

Reader tracking 

As mentioned in the analysis of APWLP protocol, the identity of the reader is sent in plaintext h(idR) and it will 
be a constant in all subsequent sessions. Therefore, it can be concluded that the protocol does not provide forward 
security and the reader may be subjected to a tracking attack. 
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Desynchronization attack 

Similarly, the values not corresponding to the tag are stored in the cloud database in this protocol. To prevent a 
desynchronization attack, both the new and old values of the tag key are kept, while the mechanism just makes 
one future session resistant to desynchronization attack and there remains the risk of vulnerability in other 
sessions. The value of the tag is updated before sending the new key to the tag, which raises the possibility of the 
desynchronization between the tag and cloud.  

Replay attack  

If the attacker attains the reader’s symmetric key, the possibility of the attack by the old key remains because it 
sends the message X = h(key‖idT‖h(idR)) of the tag’s key without any random number or timestamp. 

Research method  

In this section, we introduce Scyther by which we analyzed the APWLP protocol and the optimized protocol in 
the following sections.  

One of the means of analyzing security protocols is to find the violations of security claims made at the time of a 
protocol description. This method has been applied by some tools including Scyther. It deals with violations of 
security claims by searching for attack patterns in different cases of the protocol (i.e., Trace patterns). A protocol 
can be attacked in different ways by an attacker, which is referred to as trace in the logic of Scyther. There is 
another concept known as Trace pattern in the logic of Scyther; it is a symbolic and disciplined demonstration of 
a set of traces that consist of existing definitions and events in a protocol.  

According to the described rules, Scyther attempts to find threat patterns against security claims in a protocol 
definition by making search and deduction about a trace pattern. A trace pattern occurs only if Scyther can reach 
it from an initial state of the protocol’s symbolic definition. Search in trace patterns can give rise to new trace 
patterns distinct from preceding states, or may end up with duplicate trace patterns. A security claim is made when 
there is no violation in any of the trace patterns. During this process, the execution of this algorithm may 
sometimes cease to stop. Hence, in such cases, Scyther envisages some limitations on the number of executions. 
In this way, if a security claim is violated, the algorithm can go ahead to find a more optimized violation or 
terminate at that point and denote the violation [11].  

Security requirements define the goal of a security protocol. The main idea of claims is their locality. According 
to this concept,  based on the messages they receive, agents have a local view on the state of a system. A protocol 
should guarantee whether an agent can be assured of some characteristics of the general situation of the system 
according to this local view. For instance, certain conditions cannot be detected by an attacker or a special agent 
is active. In the following, we describe some claims of authentication and security.  

Secrecy: This claim states that certain information will not be leaked to an attacker even if it is exchanged on an 
insecure network. Secrecy is a protocol that holds only when for network components we have; in each run. Roles 
are mapped only to reliable agents. Also, there are certain conditions for secrecy that should not be understood by 
the attacker. The claim of secrecy can assign roles for any condition including variables.  

Authentication: There are many cases of authentication. In the basic case, authentication is a simple statement 
about the existence of a communication entity. In describing a protocol, it is stated that at least two agents are 
communicating; however, we cannot guarantee that there is certainly one communication entity in each run when 
the network is controlled by the attacker. For example, the initiator cannot be sure who sent the message “hello” 
it received. This message might have been sent by an attacker or any other agent. The minimum requirement for 
authentication is that when agent A performs a role it can make sure that there is at least one communication entity 
in the network. In most cases, stronger authentication is required; for example, when a communication entity is 
aware of the matter that it is communicating with A and knows that the communication entity performs a given 
role. In addition, maybe we need to make sure that the message was sent according to the description of the 
protocol. In the following, we describe some cases of authentication;  

 Aliveness: This claim lays down that the communication entity performed some events, which means 
that the entity is alive, so to speak. In Scyther, four cases of aliveness are described: “weak aliveness”, 
“weak aliveness in the correct role”, “recent aliveness”, and “recent aliveness in the correct role”. The 
description of weak aliveness determines that if an agent performs a claim event and the communication 
entity in question is reliable, so this entity performs an event. In most cases, knowing that a 
communication entity is in the state of weak aliveness per se is not enough, as at least we need to know 
it is performing a role as expected with respect to the description of the protocol. “Weak aliveness in the 
correct role” describes that the communication entity is alive but it does not reveal whether a claim event 
happened before, after or during execution. “Recent aliveness” shows that a communication entity 
performs an event when performing a role in which the claim event occurs. 
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 Synchronization: aliveness requires exciting certain events by a communication entity without putting 
restrictions on the content of exchanged messages. One of the requirements of stronger authentication is 
fulfilled through synchronization. In this case, all messages received should have been sent by a 
communication entity. Indeed, the messages need to be received by a communication entity. In this case, 
the exchange of a real message should have occurred in accordance with the description of a protocol.  

 Non-injective synchronization: This characteristic states that any event that we want to occur in the 
description of a protocol occurs in each component of the protocol. It is important to know that 
synchronization does not simply consider the content and order of messages. If an attacker sends 
messages without making any change in a receiver, this is not held to be a synchronization attack.  

 Injective synchronization: Non-injective synchronization ensures that the protocol will be precisely 
executed and this happens when there is no attacker. Although agents may have a couple of executions 
probably concerning similar agents, the attacker can imply an unexpected behavior by changing the 
messages of a session versus another session. Particularly, protocols may be still susceptible to replay 
attacks in the event of non-injective synchronization. In a replay attack, the attacker responds to the 
message received so that reliable agents are fooled. In this way, they think that the protocol run was 
successfully completed. If there is no attacker whatsoever, the behavior ceases to exist. For a protocol 
with two agents (i.e., initiators with claim event and respondent), there must be an injective scheme of 
initiator’s runs together with a claim event for corresponding respondent’s run. In other words, the 
initiator’s two different versions of claim should correspond to the respondent’s different runs.  

 Agreement: Synchronization ensures that the protocol is run as described for it even in the presence of 
an attacker. Another group of authentication characteristics focuses on the agreement on the data 
exchanged between agents. The idea behind these agreements maintains that after a protocol runs, parties 
agree on the values of variables. According to the description of the protocol, an agreement is defined by 
requesting that the contents of the received messages are related to the message sent. As a result, after 
running a protocol, the values of variables exactly match the protocol description.  

The description of an agreement is much like that of synchronization, except that the latter entails the 
order of the relation; i.e., sending an event should precede the receiving event.  

The agreement states that there are runs for other roles of the protocol for all claim events presented in 
every single part of a security protocol so that all communication events preceding the claim event should 
have occurred before a claim. The injective agreement is defined in the same way as injective 
synchronization, which is obtained from a non-injective synchronization [12].  

Comparison with other tools  

Scyther tool was compared with the three tools: Avispa (with four backup tools CL-Atse, OFMC, Sat-MC, and 
TA4SP), ProVerif, and Casper/FDR. The results are based on the key-sharing protocols Needham-Schroeder, 
EKE, and TLS. In the following, a brief account of the comparison is presented.  

Comparing the protocol analysis tools’ performance showed that Proverif is the fastest tool for analyzing the 
protocols. With a slight difference, Scyther stands in second place. However, it has the advantage of not using 
approximations. CL-Atse and OMFC were so close with concrete sessions, and are the most efficient of the Avispa 
tools. The Sat-MC is placed in the next rank. Casper/FDR has an exponential behavior and is slower than OMFC 
and CL-Atse but faster than Sat-MC for a small number of runs.  

For a higher number of runs of simple protocols, it seems that Sat-MC can outperform the other two tools. In some 
cases, TA4SP can complement other Avispa tools, but it generally is significantly slower than tools that can handle 
unbounded verification (Scyther and proverif) and has the drawback of not being able to show attack traces 
(Cremers et al., 2009).  

In Fig. 2., we show the results of executing this protocol by using the Scyther tool.  
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Fig. 2. Attacks to APWLP protocol by using Scyther tool 

As shown in Fig. 2, the characteristics of authentication are not provided for the tag, so the authenticity of the 
reader is not verified for it. In addition, given that Scyther hampers the checking of the states of illogical leakage 
of a long-term key, the attacker, after all, gets access to the reader’s and cloud’s shared long-term key after three 
consecutive sessions. The graph of its attack is shown in Figs. 3, 4, and 5. It is noteworthy that the leakage violates 
Niagree, Aliveness, and Nisynch’s claims in the cloud.  
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Fig. 3. Violation of aliveness claim in APWLP protocol 
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Fig. 4. Violation of agreement claim in the APWLP protocol 
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Fig. 5. Violation of synchronization claim in the APWLP protocol 
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Optimized protocol  

In this section, an attempt was made to reduce the computational overhead for the tag using the rotation function 
instead of the hash function. This can be observed in reducing the time of protocol run by means of a Scyther tool. 
Moreover, when the reader’s key is leaked, the attacker cannot get access to the identity of the tag. In this protocol, 
to establish the feature of message freshness and data indexes stored in the cloud, we used timestamp instead of a 
random number. Table 3 presents the notations used in the optimized protocol.  

Table 3. Notations used in the optimized protocol 

Notations description 

T Tag 
R Mobile reader 
C Cloud server 

idT Identity of the tag 
idR Identity of the reader 
key The secret key of a tag 
kRC The shared key between reader and cloud server 

k The symmetric key for encrypting and decrypting data stored in the cloud 
Tr Timestamp generated by the reader 
Tt Timestamps stored in the tag 

Rot(A,B) Rotation to the left A by the length of B bites 

⨁ Exclusive Or 
|| The concatenation of two strings 

Initialization phase 

The tag stores Ek(idT) and Tt.  

The reader calculates and stores Rot(Ek(idR),(Ek(idR) ⨁ idR) and KRC.  

The cloud database stores data as shown in Tables 4 and 5. 

Table 4. The way shared key is stored between reader and cloud in the cloud 

Data Index 

kRC Rot(Ek(idR),(Ek(idR) ⨁ idR)) 

⫶ ⫶ 

Table 5. How the identity of the tag is stored in the cloud 

Data Index 

Ek(idT) T 

⫶ ⫶ 
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Authentication phase 

 
Fig. 6. Optimized authentication protocol 

The optimized protocol shown in Fig. 6 is as follows;  

Step 1: R  T: Tr 

The reader generates a timestamp, i.e., Tr, and sends it to the tag.  

Step 2: T  R: Tr || Tt || Rot(Ek(idT), Ek(idT) ⨁ Tr) 

Having received Tr, the tag computes the message Rot(Ek(idT) ⨁ Tr and sends it as a response to the reader along 
with the timestamp of the preceding session Tt.  

Step 3: R  C: Tr || Tt || Rot(Ek(idT), (Ek(idT) ⨁ Tr)) || Rot(Ek(idR), (Ek(idR) ⨁ idR)) 

The reader sends the message M1 = Rot(Ek(idT), (Ek(idT) ⨁ Tr)) sent from the tag to find the identity of the tag 
and the message M2 = Rot(Ek(idR), (Ek(idR) ⨁ idR)) to present itself to the cloud and use their shared key to the 
cloud server.  

Step 4: C  R: EkRC(Ek(idT) || Tr || Tt) 

Cloud server searches M2. If finds it, the cloud server can find corresponding KRC and is certain that no other 
agent is able to compute it. If the verification operation succeeds, the cloud server searches Tt in its records. The 
result of the search can be either of the two cases: 

 There is no compatible timestamp, the authentication fails, and the protocol run is terminated.  
 If the cloud server finds Tt, the cloud server and tag both successfully make the update in the last 

authentication and send EkRC(Ek(idT)‖Tr‖Tt) to the reader.  

Step 5: R  T: {Rot(Ek(idT), (Ek(idT) ⨁ Tt))}Left 

The reader uses KRC to decrypt EkRC(Ek(idT)‖Tr‖Tt). Once Tr is seen, it makes sure whether it is fresh, and the 
identity of the cloud is authenticated for the reader because the cloud is aware of the shared key. Next, using K, it 
gets idT, and its authenticity is confirmed for the reader after computing Rot(Ek(idT), (Ek(idT) ⨁ Tr)) and 
comparing it with the message of M1 received from the tag. The reader send the left part of M3 = Rot(Ek(idT), 
(Ek(idT) ⨁ Tt)) to the tag.  
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Step 6: T  R: {Rot(Ek(idT), (Ek(idT) ⨁ Tt))}Right 

Having received the left part of M3, the tag computes it. If it is equal to the message received from the reader, the 
authenticity of the reader will be confirmed for the tag, because it is only the reader that is allowed to retrieve the 
identity of the tag from the cloud server. Next, to confirm Tr, it sends the right part of M3 to the reader and 
replaces Tr with its own Tt.  

Step 7: R  C: EkRC(Ek(idT), Tr) 

Once the right part of M3 is received, the reader will be aware of the tag’s update and computes EkRC(Ek(idT), Tr 
and sends it to the server so that it matches the tag by updating Tt.  

Step 8: C  T: EkRC(ACK, Tr) 

Once the message EkRC(Ek(idT), Tr) is received, the cloud server replaces the corresponding Tt with Tr. Then, it 
sends the verification message Ek(idT) to the reader.  

Using the Scyther tool, we analyzed the security of the proposed protocol. As shown in Fig. 7, none of the security 
claims were violated and no attack happened to it.  

 
Fig. 7. Result of the analysis of the proposed protocol by means of Scyther tool 

Conclusion 

In this paper, we analyzed the evolution of authentication protocols in could-based RFID systems. Then, we 
thoroughly analyzed one of the protocols recently introduced in this context (i.e., APWLP). Using the Scyther 
tool, we demonstrated that the protocol does not have the essential security characteristics. We attempted to reduce 
the tag’s and reader’s computation overhead in an RFID system by employing lighter functions, making it resistant 
to desynchronization attacks and replay. We demonstrated it also by means of the Scyther tool. One of the reasons 
for choosing the APWLP protocol is, in addition to being up to date, the use of the Avispa security validation tool 
by its developers. In the present study, we demonstrate that this tool can detect all attacks by drawing on the 
material presented and validating our own protocol. 

There are plenty of powerful tools in this context. For future studies, we will try to expose the weaknesses and 
strengths of other tools by investigating them in detail. In this way, we can obtain a tool with the minimum 
weaknesses to validate security protocols.  
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