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Abstract— Reliable on-board state estimation demands high sensor sampling rate so as to update the 
CPU with present state of the robot fast enough. Since on-board CPUs often have limited computational 
capacity, a robot must be designed to use this resource efficiently. Current protocols force the CPUs to 
spend a considerable amount of time fetching sensor data, which delays the state estimation and affects 
crucial operations like planning and execution of control algorithms. This problem becomes predominant 
in high-speed robots, where state estimation needs to be extremely fast and accurate. This research, 
therefore, presents an enhanced communication protocol, aimed at minimizing the CPU intervention time 
required for fetching sensor data. The work also proposes deployment of the said communication 
protocol on a hardware accelerator for a drastic reduction in the CPU intervention time. The design was 
first simulated using Xilinx ISE Design Suite and subsequently implemented on a PSoC 5LP for 
hardware experimentation. The performance of serial and parallel implementations of the proposed 
communication protocol was analyzed comparatively against that of the standard I2C protocol. 
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I. INTRODUCTION 

State estimation is the fundamental operation of autonomous robots, wherein the CPU collects raw data from 
the sensors, processes it and produces reliable values so as to estimate the present state of the robot. The 
estimated state is then passed on to the planner, which plans the future action(s) accordingly. Finally, the 
controller provides a desirable response by aptly controlling the actuation elements. In most cases, robots use 
multiple sensors to acquire information about various environmental parameters, which is then processed using 
data fusion algorithms in order to reduce the uncertainty in state estimation and make more informed decisions. 

Currently, Inter-Integrated Circuit (I2C) [1]-[9] and Serial Peripheral Interface (SPI) [9]-[12] are the two 
preferred communication protocols for multi-sensor data transfer. SPI is relatively fast, but has more hardware 
requirements than I2C, due to which interfacing of multiple sensors becomes complicated. I2C, on the other hand, 
is a bit slow but the fact that it uses only 2 lines for communication reduces the system complexity to a great 
extent. Other advantages of I2C include the possibility of multi-master-multi-slave communication and 
acknowledgement of every byte of data transferred, which makes it an ideal protocol for interfacing multiple 
sensors with the CPU. 

However, if I2C is implemented on a software-level (i.e. serial implementation), the CPU wastes a 
considerable amount of time fetching sensor data, which introduces a time-lag derived error in state estimation. 
This problem becomes predominant in high-speed robots, where state estimation needs to be as fast as real-time, 
and a delay of even a few milliseconds can lead to catastrophic consequences. 

This research, therefore, proposes the design of Robot Sensor Interface (RSI), a communication protocol 
derived from the I2C protocol, which enjoys the benefits of reduced latency, and suggests its deployment on a 
software-level for reducing the CPU intervention time. It further suggests implementation of the RSI on a 
hardware-level (i.e. parallel implementation), which accelerates the sensor data fetch cycles by running parallel 
to the CPU, thereby increasing the sensor sampling rate and reducing the CPU intervention time drastically. 

II. BACKGROUND 

I2C is a widely used low-speed, synchronous, serial computer bus invented by Philips Semiconductor (now 
NXP Semiconductors) in 1982. It was originally intended to enable communication between multiple slave 
integrated circuits (ICs) and one or more master ICs within a short distance, and has become a de facto standard. 
It employs only 2 lines, serial clock (SCL) for synchronizing the communication and serial data (SDA) for 
transferring the data. Both the lines need to be pulled up to +Vdd using appropriate pull-up resistors. I2C offers 
handshaking feature for improved error handling. It is predominantly employed where the notions of hardware 
simplicity and inexpensive implementation surpass the communication speed requirement. 
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Fig. 1. (a) Standard I2C Communication Protocol with 7-bit Addressing and (b) RSI Communication Protocol 

TABLE I.  Legend for Figure 1 

Signal Description 

I2C Protocol RSI Protocol 

S Start Condition: SDA goes low while SCL is 
high 

Start Condition: SDA goes low while SCL is 
high 

SA 7-bit Slave Address 8-bit Slave Address 

RA 8-bit Internal Register Address 7-bit Internal Register Address 

W Write bit (0) Write bit (0) 

R Read bit (1) Read bit (1) 

ACK Acknowledge: SDA goes low at 9th clock cycle Acknowledge: SDA goes low at 9th clock cycle 

NACK Not-Acknowledge: SDA stays high at 9th clock 
cycle 

Not-Acknowledge: SDA stays high at 9th clock 
cycle 

DATA 8-bit Data Packet 8-bit Data Packet 

P Stop Condition: SDA goes high while SCL is 
high 

Stop Condition: SDA goes high while SCL is 
high 

Fig. 1 (a) represents the standard I2C protocol. The communication starts when the master node generates a 
start condition by pulling the SDA line low while SCL is high. The master then sends a 7-bit slave address 
followed by a write bit and waits for the corresponding slave to acknowledge by tri-stating the SDA line. Every 
slave connected to the I2C bus then compares this address with its own and upon a successful match, generates 
an acknowledgement (ACK) signal by pulling the SDA line low. The master then writes the internal register 
address to the slave and again waits for it to acknowledge. The further sequence depends upon whether the 
master writes to the slave, or reads from it. 

In case of a write operation, the master, upon receiving acknowledgement, writes the first data byte to the 
slave and again waits for acknowledgement. The data transfer continues until the last bit is written to the slave 
and acknowledged, after which the master generates a stop condition by pulling the SDA line high while SCL is 
high. 

Conversely, in case of a read operation, the master, upon receiving acknowledgement, generates a repeated 
start condition, followed by the slave address and a read bit. The slave then responds with an acknowledgement 
and sends the first data byte to the master and waits for it to acknowledge. The data transfer continues until the 
master sends a not-acknowledge (NACK) signal by pulling the SDA line high, immediately followed by the 
stop condition. 

Fig. 1 (b) represents the proposed RSI protocol. It is quite similar to I2C; however, it comes with some 
significant modifications. In RSI, the internal register address is not written to the slave, instead, it is sent on the 
SDA line immediately following the slave address and the slave is programmed to acknowledge only if it holds 
a register with that particular address. This omits the requirement of a repeated start condition during the read 
operation, which saves 10 crucial clock pulses during a single sensor data fetch cycle. Another difference 
between the two is that the read/write bit in RSI is sent along with the 7-bit register address and the slave 
address is expanded to 8-bits, which allows interfacing of 256 slaves with a single master device. This is 
proposed following a general observation that, for a complex robotic system, the number of sensors (slaves) to 
be interfaced with the CPU is generally more than the number of internal registers within each sensor. 

To sum up, RSI not only supports important I2C features such as handshaking and hardware simplicity, but 
also enjoys additional benefits of reduced latency and a two-fold increase in the number of slaves per master. 
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III. RESEARCH METHODOLOGY 

A. Problem Statement 

The major limitation of the I2C protocol is its slow speed. For instance, the standard mode of I2C protocol 
runs at 100 kHz clock frequency, which translates to a data transfer rate of no more than 12.5 kilobytes per 
second. This means that any data package larger than 12.5 bytes will reduce the sampling rate down to less than 
1 kHz, which is bound to happen since most sensors have data package sizes greater than this value. This 
problem intensifies in case of multi-sensor systems, wherein there are various data packages to be transferred 
across the bus. Furthermore, due to serial implementation, the communication sub-system remains idle while the 
processor is functioning and vice-versa. Hence, the CPU unnecessarily wastes a lot of time waiting for sensor 
data in each cycle, thereby reducing the sampling rate and adversely affecting the state estimation. 

B. Proposed Design 

The serial implementation of the proposed system requires the incorporation of the RSI block as an 
intellectual property (IP) core into the architecture of the future system on chip (SoC) devices. This will enable 
communication using the proposed RSI protocol, similar to the I2C protocol. 

The parallel implementation, on the other hand, requires a much complex system to be developed, of which 
RSI block is just a part. The top-level design of such a system principally constitutes of a CPU, a hardware 
accelerator [13] and the RSI block itself. Detailed architecture of the described system is represented in Fig. 2, 
where the sensors (slaves) are assumed to be able to communicate using the proposed RSI protocol. 

 
Fig. 2. Architecture of Hardware Accelerated Implementation of RSI 

The entire process of hardware accelerated sensor data fetch operation is elucidated in Fig. 3, showcasing the 
intermediate steps of the proposed protocol in detail with reference to Fig. 1 (b) and Fig. 2. The CPU generates 
an enable signal to initialize the hardware accelerator, which then modifies the control register to command the 
RSI block to begin the sensor data fetch operation. The CPU can now perform other compute-intensive tasks 
while the RSI block fetches the sensor data (using the proposed RSI protocol) and loads it into the memory 
element (buffer) so that the CPU can easily access it as and when required (by servicing the interrupt requested 
by the hardware accelerator). Status of the RSI block is continuously monitored by the hardware accelerator 
with the help of status register. Once the entire sensor data fetch cycle is completed, the hardware accelerator 
generates an interrupt indicating the same and disables itself. The CPU can re-enable it whenever necessary to 
read the same sensor again, or a different one. A finite state machine (FSM) can be designed to sequentially read 
data from multiple sensors. Note that the red dashed lines in Fig. 3 represent the enable (EN) and interrupt (INT) 
signals, and are not an integrated part of the process flow. 
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Fig. 3. Flowchart of Hardware Accelerated Implementation of RSI 

C. Software Simulation 

The I2C as well as RSI protocols were designed in Xilinx ISE Design Suite 14.7 [14] using Verilog hardware 
description language (HDL). The notion of finite state machines (FSMs) was used to conditionally switch 
between different stages of the communication protocols, depending upon the master and slave responses. The 
behavioral models of both the communication protocols were individually simulated using the ISim [15] 
simulation tool and their timing diagrams (Fig. 4 and Fig. 5) were verified. The slave algorithms were developed 
separately with an intention to emulate slave devices employing the I2C and RSI protocols, respectively. 

 
Fig. 4. Simulated Timing Diagram of I2C Communication Protocol at 100 kHz Clock Frequency 

Fig. 4 shows simulation of single byte read sequence of the standard I2C protocol. Initially, the I2C block is in 
idle condition (State 0). The communication starts when the EN signal goes low. First, a start condition is 
produced (State 1) and 7-bit slave address, 0x50 is sent (State 2) along with write bit (State 3). Upon reception 
of acknowledgement from the slave (State 4), an 8-bit internal register address, 0xBB is written to it (State 5). 
The slave acknowledges again (State 6), after which, a repeated start condition is produced (State 7) and the 7-
bit slave address, 0x50 is sent again (State 8), this time followed by a read bit (State 9). The slave then responds 
with an acknowledgement (State 10) and delivers an 8-bit data packet, 0xAA to the master (State 11), which 
then sends a NACK signal (State 12) to indicate completion of data transfer. The process is subsequently 
terminated as the master generates a stop condition (State 13). 
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Fig. 5. Simulated Timing Diagram of RSI Communication Protocol at 100 kHz Clock Frequency 

Fig. 5 shows simulation of single byte read sequence of RSI protocol with similar slave details and data to be 
communicated as in case of I2C protocol simulation. However, the timing diagram appears to be different in this 
case since the FSM built for simulation was based on Fig. 1 (b). The communication begins with a start 
condition (State 1) followed by an 8-bit slave address, 0xBB (State 2). Once the corresponding slave 
acknowledges (State 3), a 7-bit internal register address, 0x50 is sent (State 4) along with a read bit (State 5). 
The slave acknowledges again (State 6) and delivers an 8-bit data packet, 0xAA to the master (State 7), which 
then sends a NACK signal (State 8) to indicate completion of data transfer. The process is subsequently 
terminated as the master generates a stop condition (State 9). It is thus evident that RSI offers a latency 
reduction of 10 clock pulses (100 µs at 100 kHz) in a single data fetch cycle. 

D. Hardware Implementation 

The proposed design was implemented on the CY8CKIT-059 PSoC 5LP [16], which is a low power 
programmable system on chip prototyping board developed by Cypress Semiconductor. It incorporates a 
powerful Arm Cortex-M3 CPU, a 24-bit digital filter block (DFB), 24 universal digital blocks (UDBs) and a 
high-performance direct memory access (DMA) controller. PSoC Creator IDE 4.2 [17] was used to transfer the 
top-level design of the proposed system as functional blocks to be compiled for hardware implementation on 
PSoC 5LP [18]. The on-board UDBs were configured using Verilog HDL to prototype our design. 

The hardware implementation was carried out in 4 stages, viz. serial I2C, serial RSI, parallel I2C and parallel 
RSI. First, real-time performance of the data transfer was analyzed by interfacing commercially available 
sensors, viz. accelerometer (ADXL345) [19], gyroscope (L3G4200D) [20] and magnetometer (HMC5883L) [21] 
with PSoC 5LP via I2C bus. A secondary PSoC 5LP device programmed with multi-slave algorithm was then 
used for comparative analysis of both the protocols. 

IV. RESULTS AND DISCUSSION 

The proposed RSI protocol exhibited superior behavior as compared to the standard I2C protocol. Simulation 
results confirmed that the RSI protocol is faster than the standard I2C protocol as it saves 10 clock pulses 
corresponding to 4 state transitions per cycle. This translates to the conservation of 100 µs per data fetch cycle at 
100 kHz clock frequency. 

The hardware implementation also yielded positive results. In case of serial implementation, the CPU wasted 
a lot of time waiting for sensor data until the entire communication process was finished and hence, the CPU 
intervention time was equal to the communication time. Since each of the three sensors (and emulated slaves) 
used for the hardware implementation had 3 8-bit registers holding the inertial measurements w.r.t. the 3 
orthogonal axes, a total of 3-byte data was to be fetched per cycle, 1 byte from each of the 3 registers. This was 
accomplished by reading the 3 registers sequentially, by changing the internal register address each time. Thus, 
RSI protocol saved about 300 µs per sensor (slave) per data fetch cycle. The RSI protocol will prove to be even 
more beneficial as the number of sensors and/or internal registers increases. 

On the other hand, in case of parallel implementation, the CPU intervened only during the interrupt, while the 
entire communication process was handled by the hardware accelerator. Therefore, the CPU intervention time 
was much less than the actual communication time. Furthermore, due to parallel execution, the sampling rate 
doubled, which in turn increased the accuracy of state estimation. The RSI protocol proved to be beneficial even 
in this case, since it fetched data faster than I2C, thereby reducing the load on hardware accelerator. The results 
obtained from the hardware experiments are presented in Table II. Note that the observations of intervention 
time in Table II are the statistical mode values of ten consecutive readings. 
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TABLE II.  Results of Hardware Experiments 

Communication 
Protocol 

Master-Slave 
Configuration 

Implementation 
Type 

Slaves Interfaced Hardware 
Accelerator 
Intervention 

Time (µs) 

CPU 
Intervention 

Time (µs) 

 
 
 
 
 
 

I2C 

 
 
 

PSoC-Sensors 

Serial 
(Software-

Level) 

Acc - 1942 

Acc + Gyro - 4663 

Acc + Gyro + Mag - 7365 

Parallel 
(Hardware 

Accelerated) 

Acc 1926 1 

Acc + Gyro 4652 2 

Acc + Gyro + Mag 7362 3 

 
 
 

PSoC-PSoC 

Serial 
(Software-

Level) 

1-Slave Algorithm - 1914 

2-Slave Algorithm - 4640 

3-Slave Algorithm - 7356 

Parallel 
(Hardware 

Accelerated) 

1-Slave Algorithm 1918 1 

2-Slave Algorithm 4643 2 

3-Slave Algorithm 7359 3 

 
 
 

RSI 

 
 
 

PSoC-PSoC 

Serial 
(Software-

Level) 

1-Slave Algorithm - 1617 

2-Slave Algorithm - 4046 

3-Slave Algorithm - 6462 

Parallel 
(Hardware 

Accelerated) 

1-Slave Algorithm 1621 1 

2-Slave Algorithm 4050 2 

3-Slave Algorithm 6466 3 

V. CONCLUSION 

This research was conducted with a vision to develop an enhanced communication protocol for faster on-
board state estimation, particularly in high-speed robots. Such a communication protocol was expected to fetch 
the sensor data faster and more efficiently than the existing protocols, like I2C. A novel communication protocol, 
the RSI, was therefore designed with an intention to reduce the latency of standard I2C protocol. Simulation 
results confirmed that RSI protocol had a latency reduction of 10 clock cycles (100 µs at 100 kHz) and was 
therefore faster as compared to the standard I2C protocol. Serial implementation reduced the CPU intervention 
time from about 1900 µs, 4600 µs and 7300 µs for 1, 2 and 3 slaves respectively in case of standard I2C protocol 
to about 1600 µs, 4000 µs and 6400 µs for the respective number of slaves in case of RSI protocol. Hardware 
acceleration further reduced the CPU intervention time to just 1 µs, 2 µs and 3 µs for both the protocols, but RSI 
still proved to be more efficient in terms of reducing the data fetch time on the hardware accelerator side. All in 
all, hardware accelerated RSI was elected as the most desirable protocol in terms of fast and efficient multi-
sensor data fetch operations. 

Future consideration of this research includes integrating the proposed protocol design as an IP core to be 
embedded in the upcoming SoC architectures and testing the real-time performance of the system with actual 
master-slave devices employing RSI. 
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