
Novel Accelerated Protocol for Faster
Sensor Data Fetch in High Speed Robots

Chinmay Vilas Samak #1, Tanmay Vilas Samak #2
Department of Mechatronics Engineering, SRM Institute of Science and Technology

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamil Nadu, India
1 cv4703@srmist.edu.in
2 tv4813@srmist.edu.in

Abstract— Reliable on-board state estimation demands high sensor sampling rate so as to update the
CPU with present state of the robot fast enough. Since on-board CPUs often have limited computational
capacity, a robot must be designed to use this resource efficiently. Current protocols force the CPUs to
spend a considerable amount of time fetching sensor data, which delays the state estimation and affects
crucial operations like planning and execution of control algorithms. This problem becomes predominant
in high-speed robots, where state estimation needs to be extremely fast and accurate. This research,
therefore, presents an enhanced communication protocol, aimed at minimizing the CPU intervention time
required for fetching sensor data. The work also proposes deployment of the said communication
protocol on a hardware accelerator for a drastic reduction in the CPU intervention time. The design was
first simulated using Xilinx ISE Design Suite and subsequently implemented on a PSoC 5LP for
hardware experimentation. The performance of serial and parallel implementations of the proposed
communication protocol was analyzed comparatively against that of the standard I2C protocol.

Keywords — Computer communication, hardware acceleration, multi-sensor systems, robotics

I. INTRODUCTION

State estimation is the fundamental operation of autonomous robots, wherein the CPU collects raw data from
the sensors, processes it and produces reliable values so as to estimate the present state of the robot. The
estimated state is then passed on to the planner, which plans the future action(s) accordingly. Finally, the
controller provides a desirable response by aptly controlling the actuation elements. In most cases, robots use
multiple sensors to acquire information about various environmental parameters, which is then processed using
data fusion algorithms in order to reduce the uncertainty in state estimation and make more informed decisions.

Currently, Inter-Integrated Circuit (I2C) [1]-[9] and Serial Peripheral Interface (SPI) [9]-[12] are the two
preferred communication protocols for multi-sensor data transfer. SPI is relatively fast, but has more hardware
requirements than I2C, due to which interfacing of multiple sensors becomes complicated. I2C, on the other hand,
is a bit slow but the fact that it uses only 2 lines for communication reduces the system complexity to a great
extent. Other advantages of I2C include the possibility of multi-master-multi-slave communication and
acknowledgement of every byte of data transferred, which makes it an ideal protocol for interfacing multiple
sensors with the CPU.

However, if I2C is implemented on a software-level (i.e. serial implementation), the CPU wastes a
considerable amount of time fetching sensor data, which introduces a time-lag derived error in state estimation.
This problem becomes predominant in high-speed robots, where state estimation needs to be as fast as real-time,
and a delay of even a few milliseconds can lead to catastrophic consequences.

This research, therefore, proposes the design of Robot Sensor Interface (RSI), a communication protocol
derived from the I2C protocol, which enjoys the benefits of reduced latency, and suggests its deployment on a
software-level for reducing the CPU intervention time. It further suggests implementation of the RSI on a
hardware-level (i.e. parallel implementation), which accelerates the sensor data fetch cycles by running parallel
to the CPU, thereby increasing the sensor sampling rate and reducing the CPU intervention time drastically.

II. BACKGROUND

I2C is a widely used low-speed, synchronous, serial computer bus invented by Philips Semiconductor (now
NXP Semiconductors) in 1982. It was originally intended to enable communication between multiple slave
integrated circuits (ICs) and one or more master ICs within a short distance, and has become a de facto standard.
It employs only 2 lines, serial clock (SCL) for synchronizing the communication and serial data (SDA) for
transferring the data. Both the lines need to be pulled up to +Vdd using appropriate pull-up resistors. I2C offers
handshaking feature for improved error handling. It is predominantly employed where the notions of hardware
simplicity and inexpensive implementation surpass the communication speed requirement.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Chinmay Vilas Samak et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2020/v12i3/201203021 Vol 12 No 3 May-Jun 2020 456

Fig. 1. (a) Standard I2C Communication Protocol with 7-bit Addressing and (b) RSI Communication Protocol

TABLE I. Legend for Figure 1

Signal Description

I2C Protocol RSI Protocol

S Start Condition: SDA goes low while SCL is
high

Start Condition: SDA goes low while SCL is
high

SA 7-bit Slave Address 8-bit Slave Address

RA 8-bit Internal Register Address 7-bit Internal Register Address

W Write bit (0) Write bit (0)

R Read bit (1) Read bit (1)

ACK Acknowledge: SDA goes low at 9th clock cycle Acknowledge: SDA goes low at 9th clock cycle

NACK Not-Acknowledge: SDA stays high at 9th clock
cycle

Not-Acknowledge: SDA stays high at 9th clock
cycle

DATA 8-bit Data Packet 8-bit Data Packet

P Stop Condition: SDA goes high while SCL is
high

Stop Condition: SDA goes high while SCL is
high

Fig. 1 (a) represents the standard I2C protocol. The communication starts when the master node generates a
start condition by pulling the SDA line low while SCL is high. The master then sends a 7-bit slave address
followed by a write bit and waits for the corresponding slave to acknowledge by tri-stating the SDA line. Every
slave connected to the I2C bus then compares this address with its own and upon a successful match, generates
an acknowledgement (ACK) signal by pulling the SDA line low. The master then writes the internal register
address to the slave and again waits for it to acknowledge. The further sequence depends upon whether the
master writes to the slave, or reads from it.

In case of a write operation, the master, upon receiving acknowledgement, writes the first data byte to the
slave and again waits for acknowledgement. The data transfer continues until the last bit is written to the slave
and acknowledged, after which the master generates a stop condition by pulling the SDA line high while SCL is
high.

Conversely, in case of a read operation, the master, upon receiving acknowledgement, generates a repeated
start condition, followed by the slave address and a read bit. The slave then responds with an acknowledgement
and sends the first data byte to the master and waits for it to acknowledge. The data transfer continues until the
master sends a not-acknowledge (NACK) signal by pulling the SDA line high, immediately followed by the
stop condition.

Fig. 1 (b) represents the proposed RSI protocol. It is quite similar to I2C; however, it comes with some
significant modifications. In RSI, the internal register address is not written to the slave, instead, it is sent on the
SDA line immediately following the slave address and the slave is programmed to acknowledge only if it holds
a register with that particular address. This omits the requirement of a repeated start condition during the read
operation, which saves 10 crucial clock pulses during a single sensor data fetch cycle. Another difference
between the two is that the read/write bit in RSI is sent along with the 7-bit register address and the slave
address is expanded to 8-bits, which allows interfacing of 256 slaves with a single master device. This is
proposed following a general observation that, for a complex robotic system, the number of sensors (slaves) to
be interfaced with the CPU is generally more than the number of internal registers within each sensor.

To sum up, RSI not only supports important I2C features such as handshaking and hardware simplicity, but
also enjoys additional benefits of reduced latency and a two-fold increase in the number of slaves per master.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Chinmay Vilas Samak et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2020/v12i3/201203021 Vol 12 No 3 May-Jun 2020 457

III. RESEARCH METHODOLOGY

A. Problem Statement

The major limitation of the I2C protocol is its slow speed. For instance, the standard mode of I2C protocol
runs at 100 kHz clock frequency, which translates to a data transfer rate of no more than 12.5 kilobytes per
second. This means that any data package larger than 12.5 bytes will reduce the sampling rate down to less than
1 kHz, which is bound to happen since most sensors have data package sizes greater than this value. This
problem intensifies in case of multi-sensor systems, wherein there are various data packages to be transferred
across the bus. Furthermore, due to serial implementation, the communication sub-system remains idle while the
processor is functioning and vice-versa. Hence, the CPU unnecessarily wastes a lot of time waiting for sensor
data in each cycle, thereby reducing the sampling rate and adversely affecting the state estimation.

B. Proposed Design

The serial implementation of the proposed system requires the incorporation of the RSI block as an
intellectual property (IP) core into the architecture of the future system on chip (SoC) devices. This will enable
communication using the proposed RSI protocol, similar to the I2C protocol.

The parallel implementation, on the other hand, requires a much complex system to be developed, of which
RSI block is just a part. The top-level design of such a system principally constitutes of a CPU, a hardware
accelerator [13] and the RSI block itself. Detailed architecture of the described system is represented in Fig. 2,
where the sensors (slaves) are assumed to be able to communicate using the proposed RSI protocol.

Fig. 2. Architecture of Hardware Accelerated Implementation of RSI

The entire process of hardware accelerated sensor data fetch operation is elucidated in Fig. 3, showcasing the
intermediate steps of the proposed protocol in detail with reference to Fig. 1 (b) and Fig. 2. The CPU generates
an enable signal to initialize the hardware accelerator, which then modifies the control register to command the
RSI block to begin the sensor data fetch operation. The CPU can now perform other compute-intensive tasks
while the RSI block fetches the sensor data (using the proposed RSI protocol) and loads it into the memory
element (buffer) so that the CPU can easily access it as and when required (by servicing the interrupt requested
by the hardware accelerator). Status of the RSI block is continuously monitored by the hardware accelerator
with the help of status register. Once the entire sensor data fetch cycle is completed, the hardware accelerator
generates an interrupt indicating the same and disables itself. The CPU can re-enable it whenever necessary to
read the same sensor again, or a different one. A finite state machine (FSM) can be designed to sequentially read
data from multiple sensors. Note that the red dashed lines in Fig. 3 represent the enable (EN) and interrupt (INT)
signals, and are not an integrated part of the process flow.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Chinmay Vilas Samak et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2020/v12i3/201203021 Vol 12 No 3 May-Jun 2020 458

Fig. 3. Flowchart of Hardware Accelerated Implementation of RSI

C. Software Simulation

The I2C as well as RSI protocols were designed in Xilinx ISE Design Suite 14.7 [14] using Verilog hardware
description language (HDL). The notion of finite state machines (FSMs) was used to conditionally switch
between different stages of the communication protocols, depending upon the master and slave responses. The
behavioral models of both the communication protocols were individually simulated using the ISim [15]
simulation tool and their timing diagrams (Fig. 4 and Fig. 5) were verified. The slave algorithms were developed
separately with an intention to emulate slave devices employing the I2C and RSI protocols, respectively.

Fig. 4. Simulated Timing Diagram of I2C Communication Protocol at 100 kHz Clock Frequency

Fig. 4 shows simulation of single byte read sequence of the standard I2C protocol. Initially, the I2C block is in
idle condition (State 0). The communication starts when the EN signal goes low. First, a start condition is
produced (State 1) and 7-bit slave address, 0x50 is sent (State 2) along with write bit (State 3). Upon reception
of acknowledgement from the slave (State 4), an 8-bit internal register address, 0xBB is written to it (State 5).
The slave acknowledges again (State 6), after which, a repeated start condition is produced (State 7) and the 7-
bit slave address, 0x50 is sent again (State 8), this time followed by a read bit (State 9). The slave then responds
with an acknowledgement (State 10) and delivers an 8-bit data packet, 0xAA to the master (State 11), which
then sends a NACK signal (State 12) to indicate completion of data transfer. The process is subsequently
terminated as the master generates a stop condition (State 13).

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Chinmay Vilas Samak et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2020/v12i3/201203021 Vol 12 No 3 May-Jun 2020 459

Fig. 5. Simulated Timing Diagram of RSI Communication Protocol at 100 kHz Clock Frequency

Fig. 5 shows simulation of single byte read sequence of RSI protocol with similar slave details and data to be
communicated as in case of I2C protocol simulation. However, the timing diagram appears to be different in this
case since the FSM built for simulation was based on Fig. 1 (b). The communication begins with a start
condition (State 1) followed by an 8-bit slave address, 0xBB (State 2). Once the corresponding slave
acknowledges (State 3), a 7-bit internal register address, 0x50 is sent (State 4) along with a read bit (State 5).
The slave acknowledges again (State 6) and delivers an 8-bit data packet, 0xAA to the master (State 7), which
then sends a NACK signal (State 8) to indicate completion of data transfer. The process is subsequently
terminated as the master generates a stop condition (State 9). It is thus evident that RSI offers a latency
reduction of 10 clock pulses (100 µs at 100 kHz) in a single data fetch cycle.

D. Hardware Implementation

The proposed design was implemented on the CY8CKIT-059 PSoC 5LP [16], which is a low power
programmable system on chip prototyping board developed by Cypress Semiconductor. It incorporates a
powerful Arm Cortex-M3 CPU, a 24-bit digital filter block (DFB), 24 universal digital blocks (UDBs) and a
high-performance direct memory access (DMA) controller. PSoC Creator IDE 4.2 [17] was used to transfer the
top-level design of the proposed system as functional blocks to be compiled for hardware implementation on
PSoC 5LP [18]. The on-board UDBs were configured using Verilog HDL to prototype our design.

The hardware implementation was carried out in 4 stages, viz. serial I2C, serial RSI, parallel I2C and parallel
RSI. First, real-time performance of the data transfer was analyzed by interfacing commercially available
sensors, viz. accelerometer (ADXL345) [19], gyroscope (L3G4200D) [20] and magnetometer (HMC5883L) [21]
with PSoC 5LP via I2C bus. A secondary PSoC 5LP device programmed with multi-slave algorithm was then
used for comparative analysis of both the protocols.

IV. RESULTS AND DISCUSSION

The proposed RSI protocol exhibited superior behavior as compared to the standard I2C protocol. Simulation
results confirmed that the RSI protocol is faster than the standard I2C protocol as it saves 10 clock pulses
corresponding to 4 state transitions per cycle. This translates to the conservation of 100 µs per data fetch cycle at
100 kHz clock frequency.

The hardware implementation also yielded positive results. In case of serial implementation, the CPU wasted
a lot of time waiting for sensor data until the entire communication process was finished and hence, the CPU
intervention time was equal to the communication time. Since each of the three sensors (and emulated slaves)
used for the hardware implementation had 3 8-bit registers holding the inertial measurements w.r.t. the 3
orthogonal axes, a total of 3-byte data was to be fetched per cycle, 1 byte from each of the 3 registers. This was
accomplished by reading the 3 registers sequentially, by changing the internal register address each time. Thus,
RSI protocol saved about 300 µs per sensor (slave) per data fetch cycle. The RSI protocol will prove to be even
more beneficial as the number of sensors and/or internal registers increases.

On the other hand, in case of parallel implementation, the CPU intervened only during the interrupt, while the
entire communication process was handled by the hardware accelerator. Therefore, the CPU intervention time
was much less than the actual communication time. Furthermore, due to parallel execution, the sampling rate
doubled, which in turn increased the accuracy of state estimation. The RSI protocol proved to be beneficial even
in this case, since it fetched data faster than I2C, thereby reducing the load on hardware accelerator. The results
obtained from the hardware experiments are presented in Table II. Note that the observations of intervention
time in Table II are the statistical mode values of ten consecutive readings.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Chinmay Vilas Samak et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2020/v12i3/201203021 Vol 12 No 3 May-Jun 2020 460

TABLE II. Results of Hardware Experiments

Communication
Protocol

Master-Slave
Configuration

Implementation
Type

Slaves Interfaced Hardware
Accelerator
Intervention

Time (µs)

CPU
Intervention

Time (µs)

I2C

PSoC-Sensors

Serial
(Software-

Level)

Acc - 1942

Acc + Gyro - 4663

Acc + Gyro + Mag - 7365

Parallel
(Hardware

Accelerated)

Acc 1926 1

Acc + Gyro 4652 2

Acc + Gyro + Mag 7362 3

PSoC-PSoC

Serial
(Software-

Level)

1-Slave Algorithm - 1914

2-Slave Algorithm - 4640

3-Slave Algorithm - 7356

Parallel
(Hardware

Accelerated)

1-Slave Algorithm 1918 1

2-Slave Algorithm 4643 2

3-Slave Algorithm 7359 3

RSI

PSoC-PSoC

Serial
(Software-

Level)

1-Slave Algorithm - 1617

2-Slave Algorithm - 4046

3-Slave Algorithm - 6462

Parallel
(Hardware

Accelerated)

1-Slave Algorithm 1621 1

2-Slave Algorithm 4050 2

3-Slave Algorithm 6466 3

V. CONCLUSION

This research was conducted with a vision to develop an enhanced communication protocol for faster on-
board state estimation, particularly in high-speed robots. Such a communication protocol was expected to fetch
the sensor data faster and more efficiently than the existing protocols, like I2C. A novel communication protocol,
the RSI, was therefore designed with an intention to reduce the latency of standard I2C protocol. Simulation
results confirmed that RSI protocol had a latency reduction of 10 clock cycles (100 µs at 100 kHz) and was
therefore faster as compared to the standard I2C protocol. Serial implementation reduced the CPU intervention
time from about 1900 µs, 4600 µs and 7300 µs for 1, 2 and 3 slaves respectively in case of standard I2C protocol
to about 1600 µs, 4000 µs and 6400 µs for the respective number of slaves in case of RSI protocol. Hardware
acceleration further reduced the CPU intervention time to just 1 µs, 2 µs and 3 µs for both the protocols, but RSI
still proved to be more efficient in terms of reducing the data fetch time on the hardware accelerator side. All in
all, hardware accelerated RSI was elected as the most desirable protocol in terms of fast and efficient multi-
sensor data fetch operations.

Future consideration of this research includes integrating the proposed protocol design as an IP core to be
embedded in the upcoming SoC architectures and testing the real-time performance of the system with actual
master-slave devices employing RSI.

REFERENCES

[1] UM10204 I2C-bus specification and user manual, Rev. 6, NXP Semiconductors, Eindhoven, Netherlands, 2014.
[2] Z. Hu, “I2C Protocol Design for Reusability,” 2010 Third International Symposium on Information Processing, Qingdao, 2010, pp. 83-

86, doi: 10.1109/ISIP.2010.51.
[3] C. Liu, Q. Meng, T. Liao, X. Bao and C. Xu, “A Flexible Hardware Architecture for Slave Device of I2C Bus,” 2019 International

Conference on Electronic Engineering and Informatics (EEI), Nanjing, China, 2019, pp. 309-313, doi: 10.1109/EEI48997.2019.00074.
[4] W. Andrysiewicz, D. Kościelnik and M. Miśkowicz, “I2C hardware master serial interface for asynchronous ADCs,” 2015 IEEE

International Symposium on Systems Engineering (ISSE), Rome, 2015, pp. 77-81, doi: 10.1109/SysEng.2015.7302736.
[5] K. B. Bharath, K. V. Kumaraswamy and R. K. Swamy, “Design of arbitrated I2C protocol with DO-254 compliance,” 2016

International Conference on Emerging Technological Trends (ICETT), Kollam, 2016, pp. 1-5, doi: 10.1109/ICETT.2016.7873672.
[6] Eswari, Bollam & Ponmagal, N. & Preethi, K. & SG, Sreejeesh. (2013). Implementation of I2C master bus controller on FPGA. 678-

681. 10.1109/iccsp.2013.6577141.
[7] Płachno Łukasz, Oleksiak Marcin, Kościelnik Dariusz and Jabłeka Marek, “I2C Interface Design for Hardware Master Devices,”

IFAC Proceedings Volumes, vol. 45, no. 7, pp. 163-168, 2012.
[8] PSoC® Creator™ Component Datasheet, “I2C Master/Multi-Master/Slave,” v3.30, Rev. *B, Cypress Semiconductor, San Jose, CA,

USA, 2014.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Chinmay Vilas Samak et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2020/v12i3/201203021 Vol 12 No 3 May-Jun 2020 461

[9] F. Leens, “An introduction to I2C and SPI protocols,” in IEEE Instrumentation & Measurement Magazine, vol. 12, no. 1, pp. 8-13,
February 2009, doi: 10.1109/MIM.2009.4762946.

[10] SPI Block Guide, v03.06, Motorola Inc., Schaumburg, IL, USA, 2001.
[11] S. Saha, M. A. Rahman and A. Thakur, “Design and implementation of SPI bus protocol with Built-in-self-test capability over FPGA,”

2014 International Conference on Electrical Engineering and Information & Communication Technology, Dhaka, 2014, pp. 1-6, doi:
10.1109/ICEEICT.2014.6919076.

[12] D. N. Oruganti and S. S. Yellampalli, “Design of power efficient SPI interface,” 2014 International Conference on Advances in
Computing, Communications and Informatics (ICACCI), New Delhi, 2014, pp. 2602-2606, doi: 10.1109/ICACCI.2014.6968350.

[13] J. Su, “Hardware Acceleration for Sensor Data Fetch,” RISS Working Papers Journal, vol. 16, pp. 129-132, Fall 2018.
[14] ISE In-Depth Tutorial, v13.1, Xilinx Inc., San Jose, CA, USA, 2011.
[15] ISim User Guide, v14.3, Xilinx Inc., San Jose, CA, USA, 2012.
[16] CY8CKIT-059 PSoC® 5LP Prototyping Kit Guide, Rev. *G, Cypress Semiconductor, San Jose, CA, USA, 2018.
[17] PSoC® Creator™ User Guide, Rev. *K, Cypress Semiconductor, San Jose, CA, USA, 2018.
[18] PSoC® 5LP: CY8C58LP Family Datasheet, Rev. *M, Cypress Semiconductor, San Jose, CA, USA, 2018.
[19] Digital Accelerometer ADXL345, Rev. 0, Analog Devices Inc., Norwood, MA, USA, 2009.
[20] L3G4200D MEMS motion sensor: three-axis digital output gyroscope, Rev. 2, STMicroelectronics, Amsterdam, Netherlands, 2010.
[21] 3-Axis Digital Compass IC HMC5883L, Rev. E, Honeywell International Inc., Morris Plains, NJ, USA, 2013.

AUTHOR PROFILE

Chinmay Vilas Samak is currently pursuing his bachelor’s degree in Mechatronics
Engineering at SRM Institute of Science and Technology, India, where he stands as one of
the department toppers and is also a proud recipient of the Academic Excellence Scholarship.
He is also associated with the Autonomous Systems Lab at the university and his research
concentrates on robotics and autonomous systems. He has also been twice felicitated at the
SRM Research Day for his contributions, with a silver medal in 2018 and a gold medal in
2020.

Tanmay Vilas Samak is currently pursuing his bachelor’s degree in Mechatronics
Engineering at SRM Institute of Science and Technology, India, where he stands as one of
the department toppers and is also a proud recipient of the Academic Excellence Scholarship.
He is also associated with the Autonomous Systems Lab at the university and his research
concentrates on robotics and autonomous systems. He has also been twice felicitated at the
SRM Research Day for his contributions, with a silver medal in 2018 and a gold medal in
2020.

ISSN (Print) : 2319-8613
ISSN (Online) : 0975-4024 Chinmay Vilas Samak et al. / International Journal of Engineering and Technology (IJET)

DOI: 10.21817/ijet/2020/v12i3/201203021 Vol 12 No 3 May-Jun 2020 462

	Novel Accelerated Protocol for FasterSensor Data Fetch in High Speed Robots
	Abstract
	Keywords
	I. INTRODUCTION
	II. BACKGROUND
	III. RESEARCH METHODOLOGY
	IV. RESULTS AND DISCUSSION
	V. CONCLUSION
	REFERENCES
	AUTHOR PROFILE

