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Abstract—Drag prediction and minimization of bullets with a relatively simple nose shape are 

accomplished by developing and applying a machine learning model that is effective and convenient in 
transforming a function into another for a correlated system. The artificial intelligence model learns from 
the aerodynamic data of two-dimensional (2-D) sections, and transforms the knowledge into the data for 
the corresponding three-dimensional (3-D) objects, by projecting the data of 2-D sections upon a few 
anchoring data points of 3-D bodies. Optimal length-to-diameter ratio of the bullet is determined by 
finding the minimum drag coefficient at the conditions investigated. The implication of the result is that 
the present method can be applied to bullets with shaper noses and also extended to other engineering 
systems with more complicated geometries such as airplane wings and wind turbine rotor blades, for 
which abundant 2-D data are available in the literature. 
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I. INTRODUCTION 

With the advent of the deep-learning program that finally won a victory in 2016 over world's best human 
player of the time in Go game, also known as Baduk and Weiqi, the artificial intelligence stimulated interest 
from various areas. In recent years, researchers have applied AI to engineering field, and [1] reviewed such 
applications in fluid mechanics. A noticeable breakthrough was made by [2] in airfoil shape optimization by 
way of DRL (Deep Reinforcement Learning).  

In the community of artificial intelligence, if the performance of a computer program improves or has a 
potential to improve with experience, the program is said to learn from experience. In this paper, a new 
approach based on ML (Machine Learning) algorithm is developed and demonstrated for aerodynamic drag 
prediction and shape optimization of bullets with a simple geometry. The new methodology presented here is 
beneficial when a sufficient amount of experimental data is available for two-dimensional (2-D) objects, 
inasmuch as it uses 2-D data for the analysis and design of three-dimensional (3-D) objects. Another example of 
the application is the design of 3-D wings for airplanes with use of the existing data of airfoils (2-D wings). 
Since abundant data of various airfoils have been available from the early 20th century, this new technique is 
expected to aid in the design of airplane wings that are the most important aerodynamic components of airplanes. 
Wind turbine rotor blades can be also designed with a similar approach, although they are substantially more 
complicated than bullets due to more geometric parameters involved. 

 

 
Fig. 1.  Geometry and notations of a simple bullet considered in the present analysis; a side view and a cross-sectional view. 

 
Figure 1 shows the geometry of the bullet with round nose, moving through air at the speed V∞. The nose is a 

hemisphere with diameter d, and the total length of the bullet is denoted as l. In the present analysis, l/d ≥ 0.5 is 
considered, with l/d = 0.5 equivalent to a hemisphere. According to Buckingham's Pi theorem (see, for example, 
[3]), the drag coefficient CD of the bullet should depend on four nondimensional parameters, i.e., CD = f (l/d, Re, 
/l, Ma), where Re is Reynolds number, /l is the relative roughness of bullet surface, and Ma is Mach number: 
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Here, D is the dimensional drag force due to skin friction and pressure force acting on the bullet. The 

reference quantities, ∞, ∞, and a∞ are respectively air density, dynamic viscosity, and the speed of sound in the 
free stream far ahead of the object. The reference area A of the bullet may be chosen as the circular area in 
figure 1, d2/4. When the surface is very smooth as in many practical cases, the effect of /l can be neglected. 
For Ma < 0.3, the air flow around the object is essentially incompressible, the fluid density is nearly invariant, 
and as a result the effect of Ma becomes negligibly small, although Mach numbers of bullets readily exceed 1 
during the motion. Therefore, we have CD = f (l/d, Re) for a smooth bullet at Ma < 0.3, and this paper considers 
such a low Mach number for demonstration purpose. 

II. NUMERICAL SIMULATIONS TO COMPLEMENT TRAINING DATA 

Regarding the object in figure 1, [4] presented several CD values for 2-D sections, but only one value for 3-D 
object with l/d = 0.5, i.e., a hemisphere. In order to obtain the minimum number of data points required by the 
present AI algorithm, Ansys® FLUENT 19.1 was used to simulate the air flows around the bullet by numerically 
solving the integral form of conservation of mass and momentum: 
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where F is the external force vector (including pressure, friction, and body forces in general), and v is the fluid 
velocity vector. Equations (1) and (2) are discretized in the flow domain with numerous small control volumes 
(i.e., mesh elements) approximating dV and the differential surface area vector, dS , normal to the control 
surface and pointing outward. The vector, rv , is the velocity of fluid relative to the control surface, merely 

equal to v if the control surface is stationary.  
For turbulent flows occurring at high Reynolds numbers, additional equations for turbulence modeling are 

necessary. Although not shown here in detail, Spalart-Allmaras turbulence model was adopted, which has been 
extensively validated for aerodynamics problems. For sufficient accuracy in the simulation results, Spalart-
Allmaras model in Ansys® FLUENT requires that the wall y+ should be such that 1wy   or 30 200wy  . 
This wy  is the inner-law variable defined near solid wall (the bullet surface in this paper), 
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where y1 is the height of the first mesh cell centroid adjacent to the solid surface and u* is the wall-friction 
velocity, viz., 
  

 * 


 wu  (4) 

 
with w representing wall shear stress. Ansys® FLUENT uses an accurate wall function approach when 
30 200wy  , and hence in all the numerical simulations performed it was ensured that the area-averaged 
values of wy  are in the appropriate range. 

In the current analysis, V∞ is set at 100 m/sec equivalent to Ma = 0.294 and Re = 68,459 so that the results are 
compatible with the data of [4] presented for incompressible flows (Ma < 0.3) at Re >104, while the geometric 
parameter l/d is varied. The present analysis may be extended to Ma > 0.3 by including the dependence of CD on 
both Ma and Re. However, since V∞ is fixed, both Ma and Re are fixed herein, and the drag coefficient for 
smooth bullets is regarded as a function of l/d only. 

Figure 2 shows a contour plot and a vector plot in the vicinity of the bullet with l/d = 2.0, moving at 100 
m/sec. Owing to the symmetry about the centerline of the 3-D bullet in figure 1, only a portion of the object 
appearing in figure 2 is sufficient in the numerical simulations. Rotational motions of bullets are not considered 
herein, and thus the application of axis boundary condition along the centerline leads to the solution for the 
entire flow field around the 3-D bullet. No-slip condition was applied on the bullet surface, and velocity inlet 
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condition was used along the boundary of the computational domain far ahead of the bullet, albeit not shown in 
figure 2. Along the other boundaries of the domain, pressure outlet condition was applied with zero gage 
pressure. For each value of l/d simulated, the computational domain and the corresponding mesh were created. 
To ensure that the computational domain is sufficiently larger than the bullet, the dimension of the domain in 
each simulation is 20 times greater than the nose radius both in front of and in the side way of the bullet. 
Downstream of the bullet, the domain size is more than 20 times the bullet length.  

 

 
Fig. 2.  Computational results of Ansys® FLUENT simulations for l/d = 2.0 at V∞ = 100 m/sec: (a) static gage pressure in Pascal, (b) relative 
velocity vectors of air flow in m/sec. 

 
In figure 2(a), the static gage pressure is illustrated in Pascal, where the stagnation point at the center of the 

nose has the highest value and the lowest pressure is observed near the conjunction between the nose and the 
cylinder because of flow acceleration. Figure 2(b) exhibits velocity vectors of air in the same portion of the 
computational domain with the color map legend presented in meters per second. The flow velocity in figure 2(b) 
is the air velocity relative to the moving bullet, and it is manifested that the flow accelerates around the nose due 
to the curvature and circulates behind the bullet due to the flow separation occurring at the base. The 
recirculation zone is associated with the low pressure region in figure 2(a). 

The calculated data of CD for 3-D bullets are plotted in figure 3, together with the data found in the literature. 
Five of 2-D data and one 3-D value at l/d =0.5 are from [4]. The other data for 2-D sections were taken from an 
unpublished reference cited by [4]. The experimental value of [4] for 3-D is CD = 0.42 at l/d =0.5, and the 
computed value, CD = 0.489, confirms the accuracy of the present numerical simulations, in comparison with 
the dispersion of the 2-D data. The 2-D values in figure 3 involve the reference area, A = d × width, whereas A = 
d2/4 for the 3-D drag coefficients. All the 2-D data in the figure are used as training data in the present 
analysis, but only the three simulation data for 3-D at l/d = 0.5, 3.0, and 6.0 are taken as part of the training data. 
The calculation of the drag force, D, exerted on the bullet involves a surface integral of Fx, which is the 
component of the forces in the direction parallel to V∞: 
  

 1
  xSD F dS

S
, (5) 

 
where  SS dS , equivalent to the summation of the areas of the facets (i.e., triangular and/or quadrilateral 

mesh elements) defining the bullet surface. Blunt bodies at small values of l/d have large drag caused by 
pressure difference between the nose and the base. As the body length increases, the pressure drag decreases by 
virtue of the elongation that enables the streamlining of the body, but the skin friction drag increases due to the 
enlarged surface area in contact with air. Therefore, the drag coefficient has a minimum at an intermediate value 
of l/d, although this trend is not apparent in the 2-D data because of the difference in geometry. 

It is possible to produce more data for 3-D CD by creating additional computational domains and meshes and 
by conducting more numerical simulations, or by manufacturing 3-D physical models to be used in multiple 
wind tunnel tests. However, the main objective of this paper is to develop and apply a new AI algorithm to save 
time and effort. Although a numerical simulation for a 3-D bullet does not require much computational resource 
owing to the simple axisymmetric geometry, fully converged numerical solutions of equations (1) and (2) 
covering a wide range of Ma and Re are still time-consuming, even if parallel processing is pursued. 
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Fig. 3.  Training data for drag coefficient in terms of 0.5 ≤ l/d ≤ 6.0: experimental data from [4] and its unpublished reference, plotted 
together with Ansys® FLUENT simulation results. All data points are for incompressible flows (Ma < 0.3) at Re > 104. 

III. ML-BASED AI ALGORITHM FOR AERODYNAMIC OPTIMIZATION 

Conventional engineering practice in aerodynamic design is to work with a limited number of shapes or 
restrict the shapes with only a few degrees of freedom. The unique feature introduced in the present method is 
the use of 2-D data as a baseline in predicting 3-D data, which is more accurate and efficient than using a 
limited number of 3-D data, when the acquisition of additional data is costly and/or time-consuming. Through 
machine learning, the task can be achieved without explicit programming of aerodynamics analysis. This 
technique can save time and effort as well as increase the accuracy of prediction, when extended to the design of 
complex 3-D objects by using the data available for 2-D geometry. The flow chart of the algorithm developed in 
this paper is shown in figure 4, and PythonTM was used to implement it.  

 
Fig. 4.  Flow chart of the machine learning algorithm to construct a trained model for 3-D object from 2-D section training data. 

 
The first step in the proposed algorithm is to search for a good regression model of the experimental training 

data, f2t, for 2-D CD shown by circles in figure 3. The regressions for these 2-D data are denoted as (f2)i in the 
flow chart of figure 4, where the subscript i is the index for the iteration over all different regression types 
available. Since polynomial regression is sufficient for the current problem, i changes from 1 to imax equal to the 
highest degree for polynomials that can be implemented. For typical machine learning algorithms, one may 
attempt to apply the regression directly to a few data for 3-D CD, but with the limited number of data, the 
regression model does not represent the problem reasonably well. During the iteration, a cost function i is 
calculated by using RMSE (Root Mean Squared Error): 
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where M is the number of data points available for 2-D CD, Fi,k is the value of (f2)i evaluated at each value of 
(l/d)k in the training data set, and k is the index for each data point. The regression model (f2)i with the minimum 
RMSE is selected as f2. To allow an appropriate representation of the data somewhat sparse as in figure 3, it is 
necessary to impose [(f2)i]max ≤ [f2t]max and [(f2)i]min ≥ [f2t]min in (l/d)1 ≤ l/d ≤ (l/d)M. 

For the next step in the machine learning algorithm, another function, 2
f , is defined as a linear function 

connecting two points, (xk, f2(xk)) and (xk+1, f2(xk+1)), with xk ≡ (l/d)k introduced for simplicity in notation. The 
distance between xk and xk+1 is now divided into three segments by two equispaced intermediate points, k and k, 
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Let us define a normalized deflection, k(Xk), which involves the difference between 2

f  and f2 at an 
intermediate point Xk (either k or k), 
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This is a reasonable approximation for the deflection at Xk, if the sign of 2 2( ) ( )

k kf X f X  in the numerator is 
fixed in xk < Xk < xk+1. Since k(Xk) becomes indeterminate when the denominator is zero, equation (8) is 
replaced with k(Xk) = 0 in that case. In the instance where the sign of 2 2( ) ( )

k kf X f X  changes in xk < Xk < 
xk+1, it is necessary to modify k(Xk) to 
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which is replaced by k(Xk) = 0 if the denominator is zero and thus the numerator is nearly zero as well. The 
integral in the numerator has the effect of reducing exaggerated oscillation of the curvature in f2. 

In order to replicate the curvature of f2 approximately and reflect it in the model for 3-D CD, let us use f3t for 

3-D CD training data (the three solid squares in figure 3) and introduce a new data set, new
3tf , of which elements 

are evaluated at all values of Xk: 
 

  new temp
3t 3t 3t 3t 1 3t 3t( ) ( ) ( ) ( ) ( ) ( ) ( )       

k k k k k k k kf X f X X f x f x f X f X , (10) 

 
where 3t

f  is a linear function passing through two points, (xk, f3t(xk)) and (xk+1, f3t(xk+1)), and temp
3tf  is a 

temporary regression of f3t approximated by a polynomial function of degree N–1, with N denoting the number 

of 3-D training data in f3t. It is not meaningful to take a polynomial of degree higher than N–1, particularly when 

only a few training data are used in the analysis. The index k in equations (7) through (10) is 1, 2, ꞏꞏꞏ, N–1, 

namely, x1 = 0.5 and xN = 6.0 with N = 3 from figure 3. In the bullet problem investigated, k is evaluated at four 

points, for the number of elements in temp
3tf  is 2ꞏ (N–1) = 4. To establish reasonable accuracy in the result, it is 

required that N ≥ 3 spanned over most part of the independent variable domain. The training data in f3t are used 

as anchoring points in the process. 
The next part of the algorithm in figure 4 is analogous to that of the previous iteration loop, with (f2)i and i 

replaced by (f3)j and j. For the purpose of selecting the best regression from (f3)j, the cost function j in this loop 
is defined as 
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where all new
3t 3t 3t f f f , and ,j kG  is the value of (f3)j evaluated at each xk = (l/d)k. The number of elements in 

all
3tf  is 3N–2, and the index k in equation (11) is for all xk and Xk. After (f3)j with the minimum j is obtained and 

chosen as f3, the model for 3-D CD is approximately determined by 
  

 3-D 3[ ] DC f . (12) 
 
Since all

3tf  has only 7 elements in this demonstration, the polynomial of degree 6 is the best regression for f3, 

insofar as the 7 points represent the 3-D CD with reasonable accuracy. Thus not required in this problem, but 

generally it is needed to impose [(f3)i]max ≤ [ all
3tf ]max and [(f3)i]min ≥ [ all

3tf ]min in the entire range of l/d. 

 

TABLE I 
TEST DATA FOR 3-D CD FROM NUMERICAL SIMULATIONS AND THE PREDICTION OF MACHINE LEARNING ALGORITHM, COMPARED WITH THE 

VALUES THAT DO NOT UTILIZE 2-D DATA. THE VALUES IN THE PARENTHESES ARE THE ERRORS CALCULATED RELATIVE TO THE TEST DATA. 

l/d 
Test Data 
(3-D CD) 

Prediction 
of Eq. (12) 

Direct regression of f3t 
without using 2-D data 

2.0 0.317 0.347 (9.46%) 0.372 (17.4%) 

4.0 0.340 0.341 (0.29%) 0.311 (8.53%) 

 
For verification, the model in equation (12) is now applied to the test data listed in table I. The two test data 

sets were obtained by additional computer simulations. The values in the fourth column of table I correspond to 

those of temp
3tf , and the values in the parentheses are the errors calculated relative to the test data. It is evident 

that the prediction of equation (12) for 3-D CD is significantly more accurate than that of temp
3tf  at both values of 

l/d tested. The model in equation (12) is highly accurate at l/d = 4.0. 
Calculation of l/d leading to the minimum 3-D CD, [f3]min, is straightforward once f3 is obtained, and the 

process can be automated using conventional numerical analysis procedures. Figure 5 compares f2 (long-dashed 

curve), temp
3tf  (short-dashed curve), f3 (solid curve), and all the values from numerical simulations (rhombus 

symbols; both training data and test data). The minimum 3-D CD is also marked for temp
3tf , f3, and all the data 

from simulations. The arrow marked with A indicates the approximate minimum CD obtained by inspection of 

all five simulation data. The minimum CD from equation (12) and temp
3tf  are marked respectively with B and C. 

The three values of minimum CD for A, B, and C are 0.317, 0.328, and 0.310 at l/d = 2.0, 2.90, and 4.13. The 
errors in the minimum CD are small for both B and C, but C shows a large amount of discrepancy in l/d for 
minimum drag coefficient, whereas a substantial improvement is made by equation (12). It appears that, with 
more 2-D experimental data at low values of l/d where the gradient of CD is large, the long-dashed curve for f2 
may be deflected further downward so that the projected f3 can be somewhat closer to the rhombus symbol at l/d 
= 2.0, which will further improve the accuracy of the predicted 3-D CD. 
 

 

Fig. 5. Drag coefficients of 2-D and 3-D bullets for Ma < 0.3 and Re > 104: long-dashed curve is f2, short-dashed curve is the polynomial 

function for 
temp

3tf , and solid curve is f3 in equation (12). Rhombus symbols are the collection of all the training and test data for 3-D case.  
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IV. CONCLUSION 

The proposed machine-learning algorithm using available 2-D data as a basis to predict the information for 3-
D objects significantly enhances the accuracy of predicted drag coefficients for bullets with round nose, when 
compared with the case where the algorithm is not adopted.  The more data available for 2-D sections, the more 
accurate result can be accomplished for 3-D objects and their shape optimization.  However, more work remains 
to cover a wide range of Mach numbers and Reynolds numbers, since the calculation was performed only at one 
Mach number with a fixed Reynolds number. 

Bullets with sharper noses that are not investigated in this paper will show different results for the optimal 
ratio of length to diameter, but the same procedure can be applied for various nose shapes, provided that the 
drag coefficient data for 2-D objects are available.  If the experimental data are not available, many 2-D 
numerical simulations and a few 3-D simulations can be performed to create such training data without making 
models and conducting many wind tunnel tests.  More importantly, the AI-implemented technique appears to be 
applicable to many other problems in other fields as well as engineering. 
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