e-ISSN : 0975-3397
Print ISSN : 2229-5631
Home | About Us | Contact Us

ARTICLES IN PRESS

Articles in Press

ISSUES

Current Issue
Archives

CALL FOR PAPERS

CFP 2021

TOPICS

IJCSE Topics

EDITORIAL BOARD

Editors

Indexed in

oa
 

ABSTRACT

Title : Classification of Herbs Plant Diseases via Hierarchical Dynamic Artificial Neural Network after Image Removal using Kernel Regression Framework
Authors : Lili N.A, F. Khalid, N.M. Borhan
Keywords : HDNN, Bayesian algorithm, Fixed-Valued Impulse Noise, Random-Valued Impulse Noise and Gaussian noise
Issue Date : January 2011
Abstract :
When herbs plants has disease, they can display a range of symptoms such as colored spots, or streaks that can occur on the leaves, stems, and seeds of the plant. These visual symptoms continuously change their color, shape and size as the disease progresses. Once the image of a target is captured digitally, a myriad of image processing algorithms can be used to extract features from it. The usefulness of each of these features will depend on the particular patterns to be highlighted in the image. A key point in the implementation of optimal classifiers is the selection of features that characterize the image. Basically, in this study, image processing and pattern classification are going to be used to implement a machine vision system that could identify and classify the visual symptoms of herb plants diseases. The image processing is divided into four stages: Image Pre-Processing to remove image noises (Fixed-Valued Impulse Noise, Random-Valued Impulse Noise and Gaussian Noise), Image Segmentation to identify regions in the image that were likely to qualify as diseased region, Image Feature Extraction and Selection to extract and select important image features and Image Classification to classify the image into different herbs diseases classes. This paper is to propose an unsupervised diseases pattern recognition and classification algorithm that is based on a modified Hierarchical Dynamic Artificial Neural Network which provides an adjustable sensitivity-specificity herbs diseases detection and classification from the analysis of noise-free colored herbs images. It is also to proposed diseases treatment algorithm that is capable to provide a suitable treatment and control for each identified herbs diseases.
Page(s) : 15-20
ISSN : 0975–3397
Source : Vol. 3, Issue.1

All Rights Reserved © 2009-2024 Engg Journals Publications
Page copy protected against web site content infringement by CopyscapeCreative Commons License